Amylopectin induces chain porous carbon skeleton boosting high performance of Na3V2(PO4)3

支链淀粉 材料科学 碳纤维 晶体结构 离子键合 电导率 X射线光电子能谱 复合材料 化学工程 结晶学 化学 复合数 有机化学 工程类 物理化学 离子 淀粉 直链淀粉
作者
Tao Zhou,Yanjun Chen
出处
期刊:Carbon [Elsevier]
卷期号:225: 119141-119141 被引量:6
标识
DOI:10.1016/j.carbon.2024.119141
摘要

Poor conductivity and stability seriously hinder the development of Na3V2(PO4)3 (NVP). In current work, we use a facile hydrothermal method to dissolve low-cost amylopectin in urea as an additional carbon source for in-situ modification of NVP. The unique amylopectin, as structure guide agent, induces the formation of one-dimensional chain structure to cross each other. The gas produced in the urea decomposition process promotes the generation of pores on the one-dimensional chain structure. Finally, one-dimensional chain porous carbon skeleton is constructed. Plentiful defects and active sites are formed in the N-doped carbon derived from urea, effectively promoting the ionic conductivity at interface of NVP grains. Notably, amylopectin can induce the O atom in NVP bulk to escape from the crystal and combine with the N atom in carbon layer to form an N-O bond, thus generating abundant oxygen vacancy inside the NVP bulk. This special effect can reduce the resistance of Na+ transport in the crystal and enhance the connect bonds between the active particles and coated carbon substrate. Thus, both the ionic conductivity and the structural stability can be significantly improved. Moreover, the ex-situ SEM/TEM/XRD/XPS/CV/EIS measurements after cycling all demonstrate the optimized crystal structure and unique morphology can be perfectly maintained during the prolonged cycling process. The optimized NVP/C,N-0.25 sample reveals 116.3 mAh g-1 at 0.1 C. Even at 80 C, it still releases 74.4 mAh g-1 and maintains 51.2 mAh g-1 after 12,000 cycles, corresponding to a low decay rate of 0.0026 % per cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
txy关注了科研通微信公众号
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
33完成签到,获得积分10
3秒前
NCS完成签到,获得积分10
3秒前
乐乐应助香橙采纳,获得10
3秒前
狄拉克乐园完成签到,获得积分10
4秒前
爆米花应助renkemaomao采纳,获得10
4秒前
完美世界应助Max采纳,获得10
4秒前
Cyrus完成签到,获得积分10
4秒前
4秒前
充电宝应助楚天正阔采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
老迟到的友菱完成签到,获得积分10
5秒前
6秒前
NexusExplorer应助小天才采纳,获得10
7秒前
strawberry发布了新的文献求助10
7秒前
7秒前
斯文败类应助DYZ采纳,获得10
7秒前
11发布了新的文献求助30
8秒前
肯德大厨完成签到 ,获得积分10
8秒前
jojo完成签到 ,获得积分10
8秒前
8秒前
9秒前
Owen应助lixxx采纳,获得10
9秒前
高山流水应助Makta采纳,获得10
9秒前
快乐的一只小跳蛙完成签到,获得积分10
9秒前
爆米花应助XNNI采纳,获得30
10秒前
11秒前
哆啦A梦完成签到 ,获得积分10
11秒前
xxy发布了新的文献求助10
11秒前
大模型应助zxy采纳,获得10
12秒前
杉杉完成签到,获得积分10
13秒前
13秒前
深海蓝鱼发布了新的文献求助30
13秒前
踏实的水云完成签到,获得积分10
13秒前
Owen应助MNing采纳,获得10
13秒前
bai完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680