亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning tool: reconstruction of long missing climate data based on spatio-temporal multilayer perceptron

风速 期限(时间) 环境科学 相对湿度 多层感知器 日照时长 缺少数据 气象学 人工神经网络 计算机科学 数据挖掘 人工智能 机器学习 地理 物理 量子力学
作者
Tianxin Xu,Yan Zhang,Chenjia Zhang,Abulimiti Abodoukayimu,Daokun Ma
出处
期刊:Theoretical and Applied Climatology [Springer Science+Business Media]
卷期号:155 (7): 5835-5847 被引量:1
标识
DOI:10.1007/s00704-024-04945-3
摘要

Abstract Long-term monitoring of climate data is significant for grasping the law and development trend of climate change and guaranteeing food security. However, some weather stations lack monitoring data for even decades. In this study, 62 years of historical monitoring data from 105 weather stations in Xinjiang were used for missing sequence prediction, validating proposed data reconstruction tool. First of all, study area was divided into three parts according to the climatic characteristics and geographical locations. A spatio-temporal multilayer perceptron (MLP) was established to reconstruct meteorological data with three time scales (Short term, cycle and long term) and one spatio dimension as inputing (rolling predictions, one step predicts one day), filling in long sequence blank data. By designing an end-to-end model to autonomously detect the locations of missing data and make rolling predictions,we obtained complete meteorological monitoring data of Xinjiang from 1961 to 2022. Seven kinds of parameter reconstructed include maximum temperature (Max_T), minimum temperature (Min_T), mean temperature (Ave _ T), average water vapor pressure (Ave _ WVP), relative humidity (Ave _ RH), average wind speed (10 m Ave _ WS), and sunshine duration (Sun_H). Contrasted the prediction accuracy of the model with general MLP and LSTM, results shows that, in the seven types of parameters, designed spatio-temporal MLP decreases MAE and MSE by 7.61% and 4.80% respectively. The quality of reconstructed data was evaluated by calculating correlation coefficient with the monitored sequences of nearest station,determining the applicable meteorological parameters of the model according to the results. Results show that,proposed model reached satisfied average correlation coefficient for Max_T, Min_T, Ave _ T and Ave _ WVP parameters are 0.969, 0.961, 0.971 and 0.942 respectively. The average correlation coefficient of Sun_H and Ave _ RH are 0.720 and 0.789. Although it is difficult to predict extreme values, it can still capture the period and trend; the reconstruction effect of 10 m Ave _ WS is poor, with the average similarity of 0.488. Proposed method is applicable to reconstruct Max_T, Min_T, Ave _ T and Ave _ WVP, but not recommended to reconstruct Sun_H, Ave _ RH and Ave _ WS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
量子星尘发布了新的文献求助10
18秒前
阿俊发布了新的文献求助10
20秒前
丘比特应助科研通管家采纳,获得10
30秒前
我是笨蛋完成签到 ,获得积分10
34秒前
55秒前
可靠的雪青完成签到 ,获得积分10
59秒前
1分钟前
张张发布了新的文献求助10
1分钟前
CipherSage应助张张采纳,获得10
1分钟前
1分钟前
比比谁的速度快应助RAIN采纳,获得10
2分钟前
fishss完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
phospho完成签到 ,获得积分10
2分钟前
lyh的老公发布了新的文献求助10
2分钟前
lyh的老公完成签到,获得积分10
3分钟前
juan完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
张张发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
6分钟前
大胆的碧菡完成签到,获得积分10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
yx_cheng应助科研通管家采纳,获得10
6分钟前
yuancw完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
Drwang完成签到,获得积分10
6分钟前
7分钟前
7分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008356
求助须知:如何正确求助?哪些是违规求助? 3548096
关于积分的说明 11298684
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811188