Deep learning tool: reconstruction of long missing climate data based on spatio-temporal multilayer perceptron

风速 期限(时间) 环境科学 相对湿度 多层感知器 日照时长 缺少数据 气象学 人工神经网络 计算机科学 数据挖掘 人工智能 机器学习 地理 量子力学 物理
作者
Tianxin Xu,Yan Zhang,Chenjia Zhang,Abulimiti Abodoukayimu,Daokun Ma
出处
期刊:Theoretical and Applied Climatology [Springer Science+Business Media]
卷期号:155 (7): 5835-5847 被引量:1
标识
DOI:10.1007/s00704-024-04945-3
摘要

Abstract Long-term monitoring of climate data is significant for grasping the law and development trend of climate change and guaranteeing food security. However, some weather stations lack monitoring data for even decades. In this study, 62 years of historical monitoring data from 105 weather stations in Xinjiang were used for missing sequence prediction, validating proposed data reconstruction tool. First of all, study area was divided into three parts according to the climatic characteristics and geographical locations. A spatio-temporal multilayer perceptron (MLP) was established to reconstruct meteorological data with three time scales (Short term, cycle and long term) and one spatio dimension as inputing (rolling predictions, one step predicts one day), filling in long sequence blank data. By designing an end-to-end model to autonomously detect the locations of missing data and make rolling predictions,we obtained complete meteorological monitoring data of Xinjiang from 1961 to 2022. Seven kinds of parameter reconstructed include maximum temperature (Max_T), minimum temperature (Min_T), mean temperature (Ave _ T), average water vapor pressure (Ave _ WVP), relative humidity (Ave _ RH), average wind speed (10 m Ave _ WS), and sunshine duration (Sun_H). Contrasted the prediction accuracy of the model with general MLP and LSTM, results shows that, in the seven types of parameters, designed spatio-temporal MLP decreases MAE and MSE by 7.61% and 4.80% respectively. The quality of reconstructed data was evaluated by calculating correlation coefficient with the monitored sequences of nearest station,determining the applicable meteorological parameters of the model according to the results. Results show that,proposed model reached satisfied average correlation coefficient for Max_T, Min_T, Ave _ T and Ave _ WVP parameters are 0.969, 0.961, 0.971 and 0.942 respectively. The average correlation coefficient of Sun_H and Ave _ RH are 0.720 and 0.789. Although it is difficult to predict extreme values, it can still capture the period and trend; the reconstruction effect of 10 m Ave _ WS is poor, with the average similarity of 0.488. Proposed method is applicable to reconstruct Max_T, Min_T, Ave _ T and Ave _ WVP, but not recommended to reconstruct Sun_H, Ave _ RH and Ave _ WS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助刻苦的煎蛋采纳,获得10
3秒前
3秒前
跳跳糖完成签到 ,获得积分10
4秒前
jjq完成签到,获得积分10
5秒前
6秒前
Bruial完成签到,获得积分10
6秒前
丘比特应助张凤采纳,获得10
6秒前
元狩发布了新的文献求助10
6秒前
张奶昔发布了新的文献求助10
7秒前
缥缈的幻雪完成签到 ,获得积分10
8秒前
科研通AI5应助盐咸小狗采纳,获得10
8秒前
10秒前
penguin发布了新的文献求助10
11秒前
咯噔完成签到,获得积分10
12秒前
勤奋的皮卡丘完成签到,获得积分20
13秒前
空白发布了新的文献求助10
13秒前
Allen发布了新的文献求助10
13秒前
14秒前
毛毛眼镜店完成签到,获得积分10
14秒前
krisliu完成签到,获得积分10
14秒前
Jasper应助林林林采纳,获得10
15秒前
薛松林发布了新的文献求助10
16秒前
Cik完成签到,获得积分10
17秒前
18秒前
Mrmiss666发布了新的文献求助10
18秒前
CipherSage应助空白采纳,获得10
19秒前
20秒前
krisliu发布了新的文献求助30
21秒前
21秒前
布丁发布了新的文献求助10
23秒前
23秒前
张奶昔完成签到,获得积分10
23秒前
空白完成签到,获得积分10
24秒前
bkagyin应助点点采纳,获得10
26秒前
26秒前
zxvcbnm发布了新的文献求助10
27秒前
bc应助zzy采纳,获得30
29秒前
wuxunxun2015发布了新的文献求助10
30秒前
哈hahehe完成签到,获得积分10
31秒前
大个应助烂漫人达采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761965
求助须知:如何正确求助?哪些是违规求助? 3305655
关于积分的说明 10135129
捐赠科研通 3019805
什么是DOI,文献DOI怎么找? 1658407
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783