清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning tool: reconstruction of long missing climate data based on spatio-temporal multilayer perceptron

风速 期限(时间) 环境科学 相对湿度 多层感知器 日照时长 缺少数据 气象学 人工神经网络 计算机科学 数据挖掘 人工智能 机器学习 地理 物理 量子力学
作者
Tianxin Xu,Yan Zhang,Chenjia Zhang,Abulimiti Abodoukayimu,Daokun Ma
出处
期刊:Theoretical and Applied Climatology [Springer Nature]
卷期号:155 (7): 5835-5847 被引量:1
标识
DOI:10.1007/s00704-024-04945-3
摘要

Abstract Long-term monitoring of climate data is significant for grasping the law and development trend of climate change and guaranteeing food security. However, some weather stations lack monitoring data for even decades. In this study, 62 years of historical monitoring data from 105 weather stations in Xinjiang were used for missing sequence prediction, validating proposed data reconstruction tool. First of all, study area was divided into three parts according to the climatic characteristics and geographical locations. A spatio-temporal multilayer perceptron (MLP) was established to reconstruct meteorological data with three time scales (Short term, cycle and long term) and one spatio dimension as inputing (rolling predictions, one step predicts one day), filling in long sequence blank data. By designing an end-to-end model to autonomously detect the locations of missing data and make rolling predictions,we obtained complete meteorological monitoring data of Xinjiang from 1961 to 2022. Seven kinds of parameter reconstructed include maximum temperature (Max_T), minimum temperature (Min_T), mean temperature (Ave _ T), average water vapor pressure (Ave _ WVP), relative humidity (Ave _ RH), average wind speed (10 m Ave _ WS), and sunshine duration (Sun_H). Contrasted the prediction accuracy of the model with general MLP and LSTM, results shows that, in the seven types of parameters, designed spatio-temporal MLP decreases MAE and MSE by 7.61% and 4.80% respectively. The quality of reconstructed data was evaluated by calculating correlation coefficient with the monitored sequences of nearest station,determining the applicable meteorological parameters of the model according to the results. Results show that,proposed model reached satisfied average correlation coefficient for Max_T, Min_T, Ave _ T and Ave _ WVP parameters are 0.969, 0.961, 0.971 and 0.942 respectively. The average correlation coefficient of Sun_H and Ave _ RH are 0.720 and 0.789. Although it is difficult to predict extreme values, it can still capture the period and trend; the reconstruction effect of 10 m Ave _ WS is poor, with the average similarity of 0.488. Proposed method is applicable to reconstruct Max_T, Min_T, Ave _ T and Ave _ WVP, but not recommended to reconstruct Sun_H, Ave _ RH and Ave _ WS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有人应助科研通管家采纳,获得10
48秒前
有人应助科研通管家采纳,获得10
49秒前
有人应助科研通管家采纳,获得10
49秒前
有人应助科研通管家采纳,获得10
49秒前
有人应助科研通管家采纳,获得10
49秒前
baolong完成签到,获得积分10
59秒前
jeff发布了新的文献求助30
1分钟前
姚老表完成签到,获得积分10
2分钟前
爆米花应助hani采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得30
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
thangxtz完成签到,获得积分10
3分钟前
李健应助zhangyimg采纳,获得10
3分钟前
云木完成签到 ,获得积分10
3分钟前
方白秋完成签到,获得积分10
3分钟前
yangquanquan完成签到,获得积分10
3分钟前
3分钟前
zhangyimg发布了新的文献求助10
3分钟前
merrylake完成签到 ,获得积分10
4分钟前
仿真小学生完成签到,获得积分10
4分钟前
有人应助科研通管家采纳,获得10
4分钟前
有人应助科研通管家采纳,获得30
4分钟前
GCD完成签到 ,获得积分10
5分钟前
6分钟前
烨枫晨曦完成签到,获得积分10
6分钟前
feiying发布了新的文献求助10
6分钟前
6分钟前
feiying完成签到,获得积分10
6分钟前
紫熊发布了新的文献求助10
7分钟前
8分钟前
Philip发布了新的文献求助10
8分钟前
8分钟前
hani发布了新的文献求助10
8分钟前
hani完成签到,获得积分10
9分钟前
紫熊完成签到,获得积分10
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826669
捐赠科研通 2454589
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527