Optimization on selecting XGBoost hyperparameters using meta‐learning

超参数 计算机科学 元学习(计算机科学) 机器学习 人工智能 管理 经济 任务(项目管理)
作者
Tiago Lima Marinho,Diego C. Nascimento,Bruno Almeida Pimentel
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13611
摘要

Abstract With computational evolution, there has been a growth in the number of machine learning algorithms and they became more complex and robust. A greater challenge is upon faster and more practical ways to find hyperparameters that will set up each algorithm individually. This article aims to use meta‐learning as a practicable solution for recommending hyperparameters from similar datasets, through their meta‐features structures, than to adopt the already trained XGBoost parameters for a new database. This reduced computational costs and also aimed to make real‐time decision‐making feasible or reduce any extra costs for companies for new information. The experimental results, adopting 198 data sets, attested to the success of the heuristics application using meta‐learning to compare datasets structure analysis. Initially, a characterization of the datasets was performed by combining three groups of meta‐features (general, statistical, and info‐theory), so that there would be a way to compare the similarity between sets and, thus, apply meta‐learning to recommend the hyperparameters. Later, the appropriate number of sets to characterize the XGBoost turning was tested. The obtained results were promising, showing an improved performance in the accuracy of the XGBoost, k = {4 − 6}, using the average of the hyperparameters values and, comparing to the standard grid‐search hyperparameters set by default, it was obtained that, in 78.28% of the datasets, the meta‐learning methodology performed better. This study, therefore, shows that the adoption of meta‐learning is a competitive alternative to generalize the XGBoost model, expecting better statistics performance (accuracy etc.) rather than adjusting to a single/particular model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
美丽乾发布了新的文献求助10
1秒前
1秒前
lina发布了新的文献求助10
2秒前
3秒前
5秒前
燕海雪发布了新的文献求助10
5秒前
思源应助同城代打采纳,获得10
5秒前
jiayou发布了新的文献求助10
6秒前
7秒前
7秒前
按揭发布了新的文献求助10
8秒前
苏瑾完成签到,获得积分10
8秒前
10秒前
Akim应助xiao采纳,获得10
10秒前
11秒前
大气龙猫发布了新的文献求助10
11秒前
桐桐应助sa采纳,获得10
11秒前
英姑应助Sherry采纳,获得10
13秒前
yfy发布了新的文献求助10
13秒前
14秒前
帅气雪糕完成签到 ,获得积分10
15秒前
15秒前
16秒前
小鲨鱼发布了新的文献求助10
16秒前
炙热芷蕊完成签到,获得积分10
16秒前
twr发布了新的文献求助10
17秒前
17秒前
同城代打发布了新的文献求助10
19秒前
Booksiy2完成签到,获得积分10
20秒前
疯狂的雁荷完成签到,获得积分10
20秒前
易吴鱼完成签到 ,获得积分10
21秒前
yyyyyy发布了新的文献求助10
22秒前
22秒前
22秒前
24秒前
科研通AI2S应助柚子采纳,获得10
25秒前
FISH完成签到 ,获得积分10
25秒前
甜甜玫瑰应助科研通管家采纳,获得10
26秒前
模糊中正应助科研通管家采纳,获得50
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329654
求助须知:如何正确求助?哪些是违规求助? 2959247
关于积分的说明 8594980
捐赠科研通 2637718
什么是DOI,文献DOI怎么找? 1443719
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656278