Optimization on selecting XGBoost hyperparameters using meta‐learning

超参数 计算机科学 元学习(计算机科学) 机器学习 人工智能 管理 经济 任务(项目管理)
作者
Tiago Lima Marinho,Diego C. Nascimento,Bruno Almeida Pimentel
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13611
摘要

Abstract With computational evolution, there has been a growth in the number of machine learning algorithms and they became more complex and robust. A greater challenge is upon faster and more practical ways to find hyperparameters that will set up each algorithm individually. This article aims to use meta‐learning as a practicable solution for recommending hyperparameters from similar datasets, through their meta‐features structures, than to adopt the already trained XGBoost parameters for a new database. This reduced computational costs and also aimed to make real‐time decision‐making feasible or reduce any extra costs for companies for new information. The experimental results, adopting 198 data sets, attested to the success of the heuristics application using meta‐learning to compare datasets structure analysis. Initially, a characterization of the datasets was performed by combining three groups of meta‐features (general, statistical, and info‐theory), so that there would be a way to compare the similarity between sets and, thus, apply meta‐learning to recommend the hyperparameters. Later, the appropriate number of sets to characterize the XGBoost turning was tested. The obtained results were promising, showing an improved performance in the accuracy of the XGBoost, k = {4 − 6}, using the average of the hyperparameters values and, comparing to the standard grid‐search hyperparameters set by default, it was obtained that, in 78.28% of the datasets, the meta‐learning methodology performed better. This study, therefore, shows that the adoption of meta‐learning is a competitive alternative to generalize the XGBoost model, expecting better statistics performance (accuracy etc.) rather than adjusting to a single/particular model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助大晨采纳,获得10
刚刚
BWZ发布了新的文献求助10
刚刚
2秒前
西子阳发布了新的文献求助10
2秒前
2秒前
下课了吧发布了新的文献求助10
2秒前
2秒前
朴实山兰完成签到,获得积分10
2秒前
2秒前
3秒前
啊嚯发布了新的文献求助10
3秒前
草上飞完成签到 ,获得积分10
3秒前
小罗飞飞飞完成签到 ,获得积分10
3秒前
3秒前
L龙完成签到,获得积分20
4秒前
雯雯完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
科研通AI5应助LZZ采纳,获得10
4秒前
情怀应助WxChen采纳,获得10
4秒前
Akim应助WxChen采纳,获得10
5秒前
深情安青应助WxChen采纳,获得10
5秒前
请叫我风吹麦浪应助WxChen采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
Dean完成签到 ,获得积分10
6秒前
乔乔发布了新的文献求助10
6秒前
小蘑菇应助ht2025采纳,获得10
6秒前
耍酷花卷发布了新的文献求助10
7秒前
微笑如冰发布了新的文献求助10
7秒前
二二二发布了新的文献求助10
7秒前
一颗柚子完成签到,获得积分10
7秒前
abc完成签到 ,获得积分10
7秒前
PMX发布了新的文献求助10
8秒前
标致小伙发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762