已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Defects recognition of pine nuts using hyperspectral imaging and deep learning approaches

高光谱成像 人工智能 模式识别(心理学) 环境科学 计算机科学 遥感 地理
作者
Dongdong Peng,Jin Chen,Jun Wang,Yuanning Zhai,Hengnian Qi,Lei Zhou,Jiyu Peng,Chu Zhang
出处
期刊:Microchemical Journal [Elsevier]
卷期号:201: 110521-110521
标识
DOI:10.1016/j.microc.2024.110521
摘要

Pine nuts, as a highly nutritious and medicinally valuable food, are susceptible to various defects during their cultivation, harvesting, and transportation, which can reduce their quality. Therefore, rapid and accurate identification of pine nut defect types is of utmost importance to ensure the overall quality of the pine nuts. In this study, hyperspectral imaging (HSI) systems covering two spectral ranges (400–1000 nm and 900–1700 nm) were employed to capture hyperspectral images of healthy pine nuts and pine nuts with six types of defects. One-dimensional (1D) and three-dimensional (3D) Convolutional Neural Network (CNN) models with multi-head attention mechanisms were constructed using 1D spectra and 3D hyperspectral images, respectively. To validate the effectiveness of the proposed models, Support Vector Classifier (SVC) models were built using 1D spectra and used as a comparison. Overall, the proposed CNN models outperform traditional machine learning methods in two spectral ranges (400–1000 nm and 900–1700 nm). 1D CNN model in the near-infrared spectral range (900–1700 nm) achieved an accuracy of 90.23 % on the training set and 81.32 % on the validation set. Additionally, the Generalized Gradient-Weighted Class Activation Mapping (Grad-CAM++) visualization method was applied to conduct visual analysis on the 1D CNN and 3D CNN models, enabling the identification of important wavelength ranges and pixel regions in the models, thereby enhancing the interpretability of the decision-making process of the models. Overall, the results of this study demonstrated the feasibility of using a combination of hyperspectral imaging and convolutional neural networks for pine nut defects classification, and the visual analysis of the models provided new insights and understanding for pine nut defects identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
superbanggg完成签到,获得积分10
1秒前
畅快的谷秋完成签到 ,获得积分10
3秒前
3秒前
5秒前
小布发布了新的文献求助10
8秒前
休休完成签到,获得积分10
10秒前
10秒前
乐之完成签到 ,获得积分10
11秒前
12秒前
不安毛豆完成签到,获得积分10
13秒前
笨笨十三完成签到 ,获得积分10
14秒前
与我常在发布了新的文献求助10
14秒前
轻松乾发布了新的文献求助10
14秒前
斯文起眸发布了新的文献求助10
16秒前
尤静柏完成签到,获得积分10
17秒前
19秒前
jim完成签到,获得积分10
20秒前
Jasper应助Rosie采纳,获得10
21秒前
21秒前
好运h完成签到 ,获得积分10
21秒前
云氲完成签到 ,获得积分10
22秒前
思源应助doctor_loong采纳,获得10
23秒前
24秒前
吃饭发布了新的文献求助10
25秒前
Charon发布了新的文献求助10
25秒前
29秒前
赋成完成签到 ,获得积分10
29秒前
32秒前
大东东发布了新的文献求助10
35秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
Rosie发布了新的文献求助10
37秒前
38秒前
38秒前
科研通AI2S应助爹爹采纳,获得10
41秒前
41秒前
42秒前
42秒前
44秒前
甜甜甜完成签到 ,获得积分10
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146637
求助须知:如何正确求助?哪些是违规求助? 2797945
关于积分的说明 7826268
捐赠科研通 2454478
什么是DOI,文献DOI怎么找? 1306280
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522