已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiobjective Evolutionary Learning for Multitask Quality Prediction Problems in Continuous Annealing Process

计算机科学 模拟退火 人工智能 过程(计算) 多任务学习 机器学习 工程类 任务(项目管理) 系统工程 操作系统
作者
Chang Liu,Lixin Tang,K. Zhang,Xuanqi Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3388103
摘要

In industrial production processes, the mechanical properties of materials will directly determine the stability and consistency of product quality. However, detecting the current mechanical property is time-consuming and labor-intensive, and the material quality cannot be controlled in time. To achieve high-quality steel materials, developing a novel intelligent manufacturing technology that can satisfy multitask predictions for material properties has become a new research trend. This article proposes a multiobjective evolutionary learning method based on a two-stage model with topological sparse autoencoder (TSAE) and ensemble learning. For the structure characteristics of a typical autoencoder (AE), a topology-related constraint is incorporated into the loss function of the AE, thus maintaining the global relationship among multistage input data to improve the data reconstruction quality. Then, a sparse representation of the data is added to the AE to achieve dimensionality reduction. Moreover, the extreme gradient boosting (XGBoost) method is applied to predict the mechanical properties of steel materials through collaboration learning mechanisms. To enhance the model accuracy, a multiobjective evolutionary algorithm (MOEA) with a knee solution strategy is used to optimize the network structure and hyperparameters of the two-stage model. Experiments are conducted using real steel production data from a continuous annealing process (CAP). The results verify that the proposed method obtains a higher prediction accuracy than other state-of-the-art methods and can guide practical production and new material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liulu完成签到 ,获得积分10
1秒前
王富贵发布了新的文献求助10
2秒前
2秒前
rainbowbaby发布了新的文献求助10
3秒前
3秒前
Z小姐完成签到 ,获得积分10
3秒前
FashionBoy应助279采纳,获得10
3秒前
英勇的梨愁完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
诚心的凛发布了新的文献求助10
6秒前
Ibuprofen发布了新的文献求助10
8秒前
4114发布了新的文献求助10
8秒前
大个应助zzg采纳,获得10
9秒前
9秒前
阿泽完成签到,获得积分10
9秒前
wx完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
yunzheng发布了新的文献求助10
13秒前
16秒前
华仔应助搞怪的紫雪采纳,获得10
17秒前
张静完成签到 ,获得积分10
18秒前
18秒前
领导范儿应助Bless采纳,获得30
19秒前
19秒前
我是老大应助4114采纳,获得10
19秒前
19秒前
浮游应助醒醒采纳,获得10
21秒前
zhizhi完成签到 ,获得积分10
22秒前
jmy发布了新的文献求助10
25秒前
诚心的凛完成签到,获得积分10
25秒前
TCMning发布了新的文献求助10
25秒前
耿鑫完成签到,获得积分20
27秒前
喔布响玩辣完成签到 ,获得积分10
29秒前
Ibuprofen完成签到,获得积分10
31秒前
32秒前
奋斗傲芙发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356