Multiobjective Evolutionary Learning for Multitask Quality Prediction Problems in Continuous Annealing Process

计算机科学 模拟退火 人工智能 过程(计算) 多任务学习 机器学习 工程类 任务(项目管理) 系统工程 操作系统
作者
Chang Liu,Lixin Tang,K. Zhang,Xuanqi Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3388103
摘要

In industrial production processes, the mechanical properties of materials will directly determine the stability and consistency of product quality. However, detecting the current mechanical property is time-consuming and labor-intensive, and the material quality cannot be controlled in time. To achieve high-quality steel materials, developing a novel intelligent manufacturing technology that can satisfy multitask predictions for material properties has become a new research trend. This article proposes a multiobjective evolutionary learning method based on a two-stage model with topological sparse autoencoder (TSAE) and ensemble learning. For the structure characteristics of a typical autoencoder (AE), a topology-related constraint is incorporated into the loss function of the AE, thus maintaining the global relationship among multistage input data to improve the data reconstruction quality. Then, a sparse representation of the data is added to the AE to achieve dimensionality reduction. Moreover, the extreme gradient boosting (XGBoost) method is applied to predict the mechanical properties of steel materials through collaboration learning mechanisms. To enhance the model accuracy, a multiobjective evolutionary algorithm (MOEA) with a knee solution strategy is used to optimize the network structure and hyperparameters of the two-stage model. Experiments are conducted using real steel production data from a continuous annealing process (CAP). The results verify that the proposed method obtains a higher prediction accuracy than other state-of-the-art methods and can guide practical production and new material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助刘先生采纳,获得10
1秒前
南琴发布了新的文献求助10
1秒前
iuv发布了新的文献求助10
2秒前
英姑应助高挑的牛青采纳,获得10
2秒前
3秒前
4秒前
4秒前
睡眼阿宁完成签到,获得积分10
4秒前
7秒前
夔kk发布了新的文献求助30
9秒前
比巴卜发布了新的文献求助10
9秒前
灰大壮壮发布了新的文献求助10
10秒前
ZY发布了新的文献求助20
10秒前
时光完成签到,获得积分10
11秒前
11秒前
甜蜜惊蛰完成签到,获得积分10
13秒前
博修发布了新的文献求助10
15秒前
刘先生发布了新的文献求助10
15秒前
16秒前
南琴完成签到,获得积分10
17秒前
20秒前
jgjghjghj发布了新的文献求助10
20秒前
21秒前
搜集达人应助方班术采纳,获得10
21秒前
orixero应助等待的谷波采纳,获得10
23秒前
redking发布了新的文献求助10
23秒前
24秒前
CCY发布了新的文献求助10
25秒前
Woo完成签到 ,获得积分10
27秒前
bemyselfelsa发布了新的文献求助10
29秒前
结实的泥猴桃完成签到 ,获得积分10
30秒前
31秒前
32秒前
orixero应助比巴卜采纳,获得10
32秒前
乐乐应助yydtly采纳,获得10
33秒前
ding应助wjcjk采纳,获得20
34秒前
波因斯坦发布了新的文献求助10
37秒前
38秒前
38秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495