亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiobjective Evolutionary Learning for Multitask Quality Prediction Problems in Continuous Annealing Process

计算机科学 模拟退火 人工智能 过程(计算) 多任务学习 机器学习 工程类 任务(项目管理) 系统工程 操作系统
作者
Chang Liu,Lixin Tang,K. Zhang,Xuanqi Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3388103
摘要

In industrial production processes, the mechanical properties of materials will directly determine the stability and consistency of product quality. However, detecting the current mechanical property is time-consuming and labor-intensive, and the material quality cannot be controlled in time. To achieve high-quality steel materials, developing a novel intelligent manufacturing technology that can satisfy multitask predictions for material properties has become a new research trend. This article proposes a multiobjective evolutionary learning method based on a two-stage model with topological sparse autoencoder (TSAE) and ensemble learning. For the structure characteristics of a typical autoencoder (AE), a topology-related constraint is incorporated into the loss function of the AE, thus maintaining the global relationship among multistage input data to improve the data reconstruction quality. Then, a sparse representation of the data is added to the AE to achieve dimensionality reduction. Moreover, the extreme gradient boosting (XGBoost) method is applied to predict the mechanical properties of steel materials through collaboration learning mechanisms. To enhance the model accuracy, a multiobjective evolutionary algorithm (MOEA) with a knee solution strategy is used to optimize the network structure and hyperparameters of the two-stage model. Experiments are conducted using real steel production data from a continuous annealing process (CAP). The results verify that the proposed method obtains a higher prediction accuracy than other state-of-the-art methods and can guide practical production and new material design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助美琦采纳,获得10
6秒前
pluto_完成签到,获得积分20
10秒前
共享精神应助pluto_采纳,获得10
13秒前
22秒前
美琦发布了新的文献求助10
25秒前
葫芦侠完成签到,获得积分10
27秒前
Criminology34应助科研通管家采纳,获得10
35秒前
SciGPT应助科研通管家采纳,获得30
35秒前
37秒前
1分钟前
andrele发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
TT发布了新的文献求助10
1分钟前
li关闭了li文献求助
1分钟前
1分钟前
pluto_发布了新的文献求助10
1分钟前
TT关闭了TT文献求助
1分钟前
Unicorn完成签到,获得积分10
2分钟前
lovelife完成签到,获得积分10
2分钟前
欣欣发布了新的文献求助10
2分钟前
souther完成签到,获得积分0
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
无问完成签到,获得积分10
2分钟前
TT发布了新的文献求助10
2分钟前
汉堡包应助andrele采纳,获得10
3分钟前
TT完成签到,获得积分10
3分钟前
清风发布了新的文献求助10
3分钟前
轻松饼干完成签到,获得积分10
3分钟前
852应助kakaa采纳,获得10
3分钟前
ding应助轻松饼干采纳,获得10
3分钟前
深情安青应助无限采纳,获得10
3分钟前
黑摄会阿Fay完成签到,获得积分10
3分钟前
4分钟前
kakaa发布了新的文献求助10
4分钟前
尕娃完成签到 ,获得积分10
4分钟前
4分钟前
轻松饼干发布了新的文献求助10
4分钟前
wggggggy完成签到,获得积分20
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723738
求助须知:如何正确求助?哪些是违规求助? 5280698
关于积分的说明 15299122
捐赠科研通 4872071
什么是DOI,文献DOI怎么找? 2616539
邀请新用户注册赠送积分活动 1566338
关于科研通互助平台的介绍 1523225