Multiobjective Evolutionary Learning for Multitask Quality Prediction Problems in Continuous Annealing Process

计算机科学 模拟退火 人工智能 过程(计算) 多任务学习 机器学习 工程类 任务(项目管理) 系统工程 操作系统
作者
Chang Liu,Lixin Tang,K. Zhang,Xuanqi Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3388103
摘要

In industrial production processes, the mechanical properties of materials will directly determine the stability and consistency of product quality. However, detecting the current mechanical property is time-consuming and labor-intensive, and the material quality cannot be controlled in time. To achieve high-quality steel materials, developing a novel intelligent manufacturing technology that can satisfy multitask predictions for material properties has become a new research trend. This article proposes a multiobjective evolutionary learning method based on a two-stage model with topological sparse autoencoder (TSAE) and ensemble learning. For the structure characteristics of a typical autoencoder (AE), a topology-related constraint is incorporated into the loss function of the AE, thus maintaining the global relationship among multistage input data to improve the data reconstruction quality. Then, a sparse representation of the data is added to the AE to achieve dimensionality reduction. Moreover, the extreme gradient boosting (XGBoost) method is applied to predict the mechanical properties of steel materials through collaboration learning mechanisms. To enhance the model accuracy, a multiobjective evolutionary algorithm (MOEA) with a knee solution strategy is used to optimize the network structure and hyperparameters of the two-stage model. Experiments are conducted using real steel production data from a continuous annealing process (CAP). The results verify that the proposed method obtains a higher prediction accuracy than other state-of-the-art methods and can guide practical production and new material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Gao发布了新的文献求助10
刚刚
momomo完成签到 ,获得积分10
刚刚
1秒前
1秒前
Kx完成签到,获得积分10
1秒前
1秒前
雷小雷习医中给雷小雷习医中的求助进行了留言
1秒前
1秒前
唐古拉发布了新的文献求助10
2秒前
缥缈凡旋发布了新的文献求助400
2秒前
李晓东完成签到,获得积分10
2秒前
细心绮兰发布了新的文献求助30
2秒前
GSQ发布了新的文献求助10
2秒前
3秒前
3秒前
Kaka发布了新的文献求助10
3秒前
Coco完成签到,获得积分10
3秒前
王彦秀完成签到,获得积分10
4秒前
油饼发布了新的文献求助10
4秒前
大模型应助邓宇杭采纳,获得10
4秒前
华仔应助Ww采纳,获得10
4秒前
4秒前
Marvel关注了科研通微信公众号
5秒前
Damtree发布了新的文献求助10
5秒前
顾矜应助清樾采纳,获得10
5秒前
西林给西林的求助进行了留言
5秒前
5秒前
wuzheng完成签到,获得积分10
6秒前
6秒前
7秒前
popo发布了新的文献求助10
7秒前
7秒前
泡泡发布了新的文献求助10
7秒前
8秒前
王哪跑12发布了新的文献求助10
8秒前
young完成签到,获得积分10
8秒前
单丽伟发布了新的文献求助10
8秒前
坦率的匪应助GSQ采纳,获得20
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559