亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiobjective Evolutionary Learning for Multitask Quality Prediction Problems in Continuous Annealing Process

计算机科学 模拟退火 人工智能 过程(计算) 多任务学习 机器学习 工程类 任务(项目管理) 系统工程 操作系统
作者
Chang Liu,Lixin Tang,K. Zhang,Xuanqi Xu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3388103
摘要

In industrial production processes, the mechanical properties of materials will directly determine the stability and consistency of product quality. However, detecting the current mechanical property is time-consuming and labor-intensive, and the material quality cannot be controlled in time. To achieve high-quality steel materials, developing a novel intelligent manufacturing technology that can satisfy multitask predictions for material properties has become a new research trend. This article proposes a multiobjective evolutionary learning method based on a two-stage model with topological sparse autoencoder (TSAE) and ensemble learning. For the structure characteristics of a typical autoencoder (AE), a topology-related constraint is incorporated into the loss function of the AE, thus maintaining the global relationship among multistage input data to improve the data reconstruction quality. Then, a sparse representation of the data is added to the AE to achieve dimensionality reduction. Moreover, the extreme gradient boosting (XGBoost) method is applied to predict the mechanical properties of steel materials through collaboration learning mechanisms. To enhance the model accuracy, a multiobjective evolutionary algorithm (MOEA) with a knee solution strategy is used to optimize the network structure and hyperparameters of the two-stage model. Experiments are conducted using real steel production data from a continuous annealing process (CAP). The results verify that the proposed method obtains a higher prediction accuracy than other state-of-the-art methods and can guide practical production and new material design.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
14秒前
17秒前
嘻嘻发布了新的文献求助10
24秒前
34秒前
巴拉巴拉完成签到 ,获得积分10
38秒前
wanci应助繁荣的心情采纳,获得10
40秒前
47秒前
leoelizabeth完成签到 ,获得积分10
48秒前
52秒前
顺利山柏完成签到 ,获得积分10
53秒前
54秒前
dd完成签到,获得积分20
54秒前
希夷发布了新的文献求助10
59秒前
1分钟前
1分钟前
adam完成签到 ,获得积分10
1分钟前
卢雅妮完成签到 ,获得积分10
1分钟前
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
cxk12138发布了新的文献求助10
1分钟前
bluebell完成签到,获得积分10
1分钟前
1分钟前
Owen应助LIn采纳,获得10
1分钟前
1分钟前
kzf丶bryant完成签到,获得积分10
1分钟前
1分钟前
kzf丶bryant发布了新的文献求助10
1分钟前
1分钟前
星启发布了新的文献求助10
1分钟前
1分钟前
所所应助melon采纳,获得10
1分钟前
yue发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526513
求助须知:如何正确求助?哪些是违规求助? 3106951
关于积分的说明 9281929
捐赠科研通 2804456
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709554