电催化剂
材料科学
钙钛矿(结构)
尿素
化学工程
无机化学
纳米技术
电化学
物理化学
电极
有机化学
化学
工程类
作者
Jinmei Xie,Rui Ding,Yi Li,Jian Guo,Yuzhen Zhang,Qi Fang,Miao Yan,Yuming He,Ziyang Yan,Zhiqiang Chen,Xinchang Guo,Qingcheng Yang,Jiajie Luo,Yibo Zhang,Xiujuan Sun,Enhui Liu
出处
期刊:Nano Energy
[Elsevier]
日期:2024-04-01
卷期号:: 109669-109669
被引量:2
标识
DOI:10.1016/j.nanoen.2024.109669
摘要
Urea oxidation reaction (UOR) is hindered by poor catalytic activity, sluggish kinetics, and complex catalytic mechanism of electrocatalysts. Herein, we develop a novel perovskite K-Ni-Zn-F catalyst (KNZF-31) towards efficient UOR, showing a low potential of 1.348 V vs. RHE at 10 mA cm−2. The designed direct urea-hydrogen peroxide fuel cell (DUHPFC) provides superior open circuit voltages and power densities (0.99 V, 11.41 mW cm−2). Ex situ technology verifies amorphous electro-active/inert NiOOH/ZnO derived from surface conversion of crystalline KNZF-31, which synergistically drive the UOR. Theoretical calculation indicates that Zn-doping in KNiF3 promotes the OH− adsorption and charge transfer of Ni2+-site and formation of surface NiOOH electroactive species, which optimizes subsequent urea adsorption and charge transfer of Ni3+-site and desorption of CO2 on NiOOH/ZnO hetero-interface. This study reveals catalytic mechanism and activity origin of KNZF-31 catalyst towards UOR, offering a bright prospect for energy-sustainable developments.
科研通智能强力驱动
Strongly Powered by AbleSci AI