阳极
材料科学
拉曼光谱
锂(药物)
电化学
涂层
阴极
X射线光电子能谱
电极
电导率
化学工程
纳米技术
化学
光学
医学
物理
工程类
内分泌学
物理化学
作者
Elhoucine Elmaataouy,Abdelwahed Chari,Ahmed Al-Shami,Ghizlane Elomari,Mohamed Aqil,Jihyeon Gim,Rachid Amine,Hervé Martinez,Jones Alami,O. Mounkachi,Mouad Dahbi
标识
DOI:10.1016/j.est.2024.111351
摘要
Lithium vanadate (Li3VO4) has garnered considerable attention as an alternative negative electrode material for non-aqueous lithium-ion batteries due to its high capacity, energy efficiency, and stable discharge voltage. Nonetheless, the Li3VO4 material displays a low rate capability, attributed mainly to its poor intrinsic electronic conductivity. Here, we report the synthesis of lithium niobate LiNbO3-coated Li3VO4 (LVO@LNO) using a one-pot sol-gel method. The resulting LVO@LNO demonstrates a high reversible capacity of approximately 530 mAh/g, which is more than double that of free Li3VO4. To explore the effect of the LNO coating process on the morphological and structural properties, Raman, XRD, operando XRD, XPS, SEM and HTEM analyses were conducted. To explain the enhancement of electronic conductivity in our modified material after a LiNbO3 coating, we conducted an Ex-Situ electrochemical impedance (EIS) and Density Functional Theory (DFT) computational study. Additionally, we designed a full cell utilizing a 1 wt% LNO-coated LVO anode and NMC-811 cathode. The cell yielded an output voltage of approximately 2.8 V with a high initial specific capacity of 350 mAh/g versus to the anode, at 1C with a capacity retention of 85 % after 100 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI