Data-driven surrogate model for aerodynamic design using separable shape tensor method

空气动力学 替代模型 可分离空间 张量(固有定义) 计算机科学 应用数学 数学 数学优化 航空航天工程 工程类 数学分析 几何学
作者
Bo Pang,Yang Zhang,Junlin LI,Xudong Wang,Min Chang,Junqiang Bai
出处
期刊:Chinese Journal of Aeronautics [Elsevier BV]
标识
DOI:10.1016/j.cja.2024.03.014
摘要

In the context of increasing dimensionality of design variables and the complexity of constraints, the efficacy of Surrogate-Based Optimization (SBO) is limited. The traditional linear and nonlinear dimensionality reduction algorithms are mainly to decompose the mathematical matrix composed of design variables or objective functions in various forms, the smoothness of the design space cannot be guaranteed in the process, and additional constraint functions need to be added in the optimization, which increases the calculation cost. This study presents a new parameterization method to improve both problems of SBO. The new parameterization is addressed by decoupling affine transformations (dilation, rotation, shearing, and translation) within the Grassmannian submanifold, which enables a separate representation of the physical information of the airfoil in a high-dimensional space. Building upon this, Principal Geodesic Analysis (PGA) is employed to achieve geometric control, compress the design space, reduce the number of design variables, reduce the dimensions of design variables and enhance predictive performance during the surrogate optimization process. For comparison, a dimensionality reduction space is defined using 95% of the energy, and RAE 2822 for transonic conditions are used as demonstrations. This method significantly enhances the optimization efficiency of the surrogate model while effectively enabling geometric constraints. In three-dimensional problems, it enables simultaneous design of planar shapes for various components of the aircraft and high-order perturbation deformations. Optimization was applied to the ONERA M6 wing, achieving a lift-drag ratio of 18.09, representing a 27.25% improvement compared to the baseline configuration. In comparison to conventional surrogate model optimization methods, which only achieved a 17.97% improvement, this approach demonstrates its superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
贝壳发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
正直无极发布了新的文献求助10
4秒前
5秒前
鲤鱼鸽子完成签到,获得积分0
6秒前
6秒前
思源应助lm采纳,获得20
8秒前
嘿小黑发布了新的文献求助10
8秒前
9秒前
ksxx发布了新的文献求助10
10秒前
11秒前
深情安青应助典雅的俊驰采纳,获得10
11秒前
12秒前
谢谢你变体精灵完成签到,获得积分10
13秒前
123发布了新的文献求助10
14秒前
ksxx完成签到,获得积分20
18秒前
18秒前
yao完成签到 ,获得积分10
22秒前
22秒前
24秒前
QUA应助WFZ采纳,获得10
25秒前
Yuantian发布了新的文献求助10
25秒前
26秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
916应助科研通管家采纳,获得30
27秒前
916应助科研通管家采纳,获得30
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
wu8577应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
28秒前
SciGPT应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
SYLH应助科研通管家采纳,获得10
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417