Limited Fault Data Augmentation With Compressed Sensing for Bearing Fault Diagnosis

计算机科学 断层(地质) 压缩传感 卷积神经网络 数据挖掘 人工智能 模式识别(心理学) 地质学 地震学
作者
Dongdong Wang,Yining Dong,Han Wang,Gang Tang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (13): 14499-14511 被引量:17
标识
DOI:10.1109/jsen.2023.3277563
摘要

Sufficient data is necessary for intelligent fault diagnostic approaches. However, in practice, it is often the case that only limited fault data is available due to various reasons, making it a challenge to accurately identify the health condition of bearings. To deal with the limited fault data issue, data augmentation strategies, such as generative adversarial networks (GANs), are widely utilized. However, GANs have the disadvantages of being difficult to train and restricted ability to generate new data when the fault sample size is limited. Specifically, GANs require a long training time and abundant training data to make the distribution of generated data closer to the distribution of actual data. This article presents a novel data augmentation approach with compressed sensing for fault diagnosis of bearings to better address the issue of limited fault data. The generated data by compressed sensing is diverse. In addition, the generated data is highly similar to the original data in the frequency domain, thus retaining the main feature information of the original data. Furthermore, data augmentation achieved through compressed sensing requires less fault data and has lower computational complexity. For bearing fault diagnosis under limited failure data, the limited fault data is first augmented based on compressed sensing, allowing for high-fidelity reconstruction and high-diversity data generation. Then, the augmented data is utilized to train a deep convolutional neural network (DCNN) to automatically learn and extract features for fault identification. The effectiveness of the presented approach is verified using two bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
悄悄发布了新的文献求助10
1秒前
姜姜发布了新的文献求助10
1秒前
xkk发布了新的文献求助10
2秒前
清闲远放完成签到,获得积分20
2秒前
3秒前
李健的粉丝团团长应助WLX采纳,获得10
3秒前
LL完成签到,获得积分10
3秒前
搜集达人应助可爱因子采纳,获得10
4秒前
guodongfzd完成签到,获得积分10
5秒前
福尔摩曦发布了新的文献求助10
5秒前
脑洞疼应助机智茗茗采纳,获得80
5秒前
xkk完成签到,获得积分10
6秒前
好好好完成签到,获得积分10
7秒前
今后应助gyz采纳,获得10
8秒前
8秒前
搜集达人应助Lxxixixi采纳,获得10
8秒前
夏侯觅风发布了新的文献求助10
8秒前
英俊的铭应助悄悄采纳,获得10
9秒前
大气的秋完成签到,获得积分10
9秒前
这是对吧完成签到,获得积分10
10秒前
10秒前
木之夏发布了新的文献求助10
11秒前
Gravity应助明理千雁采纳,获得10
12秒前
所所应助嘎嘎嘎嘎采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
tyd发布了新的文献求助10
13秒前
14秒前
寒冷的断缘完成签到,获得积分10
15秒前
敬老院N号发布了新的文献求助10
15秒前
纸飞机发布了新的文献求助10
15秒前
16秒前
敬老院N号发布了新的文献求助10
16秒前
敬老院N号发布了新的文献求助10
16秒前
敬老院N号发布了新的文献求助10
16秒前
敬老院N号发布了新的文献求助10
16秒前
敬老院N号发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152304
求助须知:如何正确求助?哪些是违规求助? 2803548
关于积分的说明 7854456
捐赠科研通 2461123
什么是DOI,文献DOI怎么找? 1310174
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765