Limited Fault Data Augmentation With Compressed Sensing for Bearing Fault Diagnosis

计算机科学 断层(地质) 压缩传感 卷积神经网络 数据挖掘 人工智能 模式识别(心理学) 地质学 地震学
作者
Dongdong Wang,Yining Dong,Han Wang,Gang Tang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (13): 14499-14511 被引量:21
标识
DOI:10.1109/jsen.2023.3277563
摘要

Sufficient data is necessary for intelligent fault diagnostic approaches. However, in practice, it is often the case that only limited fault data is available due to various reasons, making it a challenge to accurately identify the health condition of bearings. To deal with the limited fault data issue, data augmentation strategies, such as generative adversarial networks (GANs), are widely utilized. However, GANs have the disadvantages of being difficult to train and restricted ability to generate new data when the fault sample size is limited. Specifically, GANs require a long training time and abundant training data to make the distribution of generated data closer to the distribution of actual data. This article presents a novel data augmentation approach with compressed sensing for fault diagnosis of bearings to better address the issue of limited fault data. The generated data by compressed sensing is diverse. In addition, the generated data is highly similar to the original data in the frequency domain, thus retaining the main feature information of the original data. Furthermore, data augmentation achieved through compressed sensing requires less fault data and has lower computational complexity. For bearing fault diagnosis under limited failure data, the limited fault data is first augmented based on compressed sensing, allowing for high-fidelity reconstruction and high-diversity data generation. Then, the augmented data is utilized to train a deep convolutional neural network (DCNN) to automatically learn and extract features for fault identification. The effectiveness of the presented approach is verified using two bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
易安发布了新的文献求助30
2秒前
ELend完成签到,获得积分10
3秒前
3秒前
Sun发布了新的文献求助10
3秒前
laowang完成签到,获得积分10
3秒前
fujun完成签到,获得积分10
4秒前
4秒前
zyx发布了新的文献求助10
4秒前
夜半发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助DJ采纳,获得10
4秒前
莫燕梦完成签到,获得积分10
5秒前
6秒前
6秒前
YY完成签到 ,获得积分10
7秒前
Hepatology发布了新的文献求助10
7秒前
绿色的yu完成签到 ,获得积分10
7秒前
7秒前
fgjkl完成签到 ,获得积分10
8秒前
8秒前
9秒前
zyw完成签到,获得积分10
9秒前
9秒前
香蕉觅云应助岗岗采纳,获得10
9秒前
害羞安荷发布了新的文献求助30
9秒前
小飞侠完成签到,获得积分10
9秒前
海风发布了新的文献求助20
10秒前
11秒前
cool发布了新的文献求助10
12秒前
所所应助搞怪半烟采纳,获得10
12秒前
小汤圆发布了新的文献求助10
12秒前
12秒前
陈博士发布了新的文献求助10
12秒前
medlive2020完成签到,获得积分10
12秒前
13秒前
chenmeimei2012完成签到 ,获得积分10
13秒前
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650