单变量
逻辑回归
肿瘤科
比例危险模型
内科学
生物
计算生物学
医学
多元统计
计算机科学
机器学习
作者
Jiaoqi Wu,Xiaozhu Zhou,Jie Ren,Zhen Zhang,Haoyu Ju,Xiaoqi Diao,Shuyi Jiang,Jing Zhang
标识
DOI:10.1016/j.compbiomed.2023.107164
摘要
Uterine corpus endometrial carcinoma (UCEC) has a strong ability of invasion and metastasis, high recurrence rate, and poor survival. Glycosyltransferases are one of the most important enzymes that coordinate the glycosylation process, and abnormal modification of proteins by glycosyltransferases is closely related to the occurrence and development of cancer. However, there were fewer reports on glycosyltransferase related biomarkers in UCEC. In this paper, based on the UCEC transcriptome data published on The Cancer Genome Atlas (TCGA), we predicted the relationship between the expression of glycosyltransferase-related genes (GTs) and the diagnosis and prognosis of UCEC using bioinformatics methods. And validation of model genes by clinical samples. We used 4 methods: generalized linear model (GLM), random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGB) to screen biomarkers with diagnostic significance, and the binary logistic regression was used to establish a diagnostic model for the 2-GTs (AUC = 0.979). And the diagnostic model was validated using a GEO external database (AUC = 0.978). Moreover, a prognostic model for the 6-GTs was developed using univariate, Lasso, and multivariate Cox regression analyses, and the model was made more stable by internal validation using the bootstrap. In addition, risk score is closely related to immune microenvironment (TME), immune infiltration, mutation, immunotherapy and chemotherapy. Overall, this study provides novel biomarkers for the diagnosis and prognosis of UCEC, and the models established by these biomarkers can also provide a good reference for individualized and precision medicine in UCEC.
科研通智能强力驱动
Strongly Powered by AbleSci AI