Glycosyltransferase-related prognostic and diagnostic biomarkers of uterine corpus endometrial carcinoma

单变量 逻辑回归 肿瘤科 比例危险模型 内科学 生物 计算生物学 医学 多元统计 计算机科学 机器学习
作者
Jiaoqi Wu,Xiaozhu Zhou,Jie Ren,Zhen Zhang,Haoyu Ju,Xiaoqi Diao,Shuyi Jiang,Jing Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:163: 107164-107164 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107164
摘要

Uterine corpus endometrial carcinoma (UCEC) has a strong ability of invasion and metastasis, high recurrence rate, and poor survival. Glycosyltransferases are one of the most important enzymes that coordinate the glycosylation process, and abnormal modification of proteins by glycosyltransferases is closely related to the occurrence and development of cancer. However, there were fewer reports on glycosyltransferase related biomarkers in UCEC. In this paper, based on the UCEC transcriptome data published on The Cancer Genome Atlas (TCGA), we predicted the relationship between the expression of glycosyltransferase-related genes (GTs) and the diagnosis and prognosis of UCEC using bioinformatics methods. And validation of model genes by clinical samples. We used 4 methods: generalized linear model (GLM), random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGB) to screen biomarkers with diagnostic significance, and the binary logistic regression was used to establish a diagnostic model for the 2-GTs (AUC = 0.979). And the diagnostic model was validated using a GEO external database (AUC = 0.978). Moreover, a prognostic model for the 6-GTs was developed using univariate, Lasso, and multivariate Cox regression analyses, and the model was made more stable by internal validation using the bootstrap. In addition, risk score is closely related to immune microenvironment (TME), immune infiltration, mutation, immunotherapy and chemotherapy. Overall, this study provides novel biomarkers for the diagnosis and prognosis of UCEC, and the models established by these biomarkers can also provide a good reference for individualized and precision medicine in UCEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虚拟的镜子完成签到,获得积分20
刚刚
STEAD完成签到,获得积分10
3秒前
英俊的铭应助Tracy麦子采纳,获得10
4秒前
5秒前
6秒前
xx关闭了xx文献求助
8秒前
11秒前
12秒前
13秒前
可爱的香岚完成签到,获得积分10
13秒前
WHY发布了新的文献求助10
14秒前
15秒前
Agoni发布了新的文献求助10
16秒前
16秒前
17秒前
愉快浩宇完成签到,获得积分10
17秒前
淡淡的寄灵完成签到,获得积分10
17秒前
老解发布了新的文献求助10
21秒前
Hi完成签到,获得积分20
21秒前
21秒前
耶比环肽发布了新的文献求助10
21秒前
微笑煎蛋完成签到 ,获得积分10
22秒前
呼呼兔发布了新的文献求助10
22秒前
22秒前
天天快乐应助愉快浩宇采纳,获得10
22秒前
24秒前
困得想薯发布了新的文献求助30
26秒前
研友_LXOWx8发布了新的文献求助10
27秒前
Agoni完成签到,获得积分20
27秒前
昔我往矣完成签到 ,获得积分10
28秒前
29秒前
赵李奕安发布了新的文献求助10
30秒前
对手完成签到 ,获得积分10
30秒前
Buster发布了新的文献求助10
30秒前
白白拜拜完成签到,获得积分10
31秒前
31秒前
Yziii举报luo求助涉嫌违规
31秒前
MXL完成签到,获得积分10
31秒前
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155969
求助须知:如何正确求助?哪些是违规求助? 2807310
关于积分的说明 7872521
捐赠科研通 2465654
什么是DOI,文献DOI怎么找? 1312280
科研通“疑难数据库(出版商)”最低求助积分说明 630031
版权声明 601905