Spectral separation degree method for Vis-NIR spectroscopic discriminant analysis of milk powder adulteration

波长 化学 线性判别分析 近红外光谱 学位(音乐) 分析化学(期刊) 色谱法 模式识别(心理学) 人工智能 计算机科学 材料科学 光学 物理 光电子学 声学
作者
Lu Yuan,Xianghui Chen,Yongqi Huang,Jiemei Chen,Tao Pan
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:301: 122975-122975 被引量:4
标识
DOI:10.1016/j.saa.2023.122975
摘要

Adulteration detection of adding ordinary milk powder to high-end dedicated milk powder is challenging due to the high similarity. Using visible and near-infrared (Vis-NIR) spectroscopy combined with k-nearest neighbor (kNN), the discriminant analysis models of pure brand milk powder and its adulterated milk powder (including unary and binary adulteration) were established. Standard normal variate transformation and Norris derivative filter (D = 2, S = 11, G = 5) were jointly used for spectral preprocessing. The separation degree and separation degree spectrum between two spectral populations were proposed and used to describe the differences between the two spectral populations, based on which, a novel wavelength selection method, named separation degree priority combination-kNN (SDPC-kNN), was proposed for wavelength optimization. SDPC-wavelength step-by-step phase-out-kNN (SDPC-WSP-kNN) models were established to further eliminate interference wavelengths and improve the model effect. The nineteen wavelengths in long-NIR region (1100-2498 nm) with a separation degree greater than 0 were used to establish single-wavelength kNN models, the total recognition-accuracy rates in prediction (RARP) all reached 100%, and the total recognition-accuracy rate in validation (RARV) of the optimal model (1174 nm) reached 97.4%. In the visible (400-780 nm) and short-NIR (780-1100 nm) regions with the separation degree all less than 0, the SDPC-WSP-kNN models were established. The two optimal models (N = 7, 22) were determined, the RARP values reached 100% and 97.4% respectively, and the RARV values reached 96.1% and 94.3% respectively. The results indicated that Vis-NIR spectroscopy combined with few-wavelength kNN has feasibility of high-precision milk powder adulteration discriminant. The few-wavelength schemes provided a valuable reference for designing dedicated miniaturized spectrometer of different spectral regions. The separation degree spectrum and SDPC can be used to improve the performance of spectral discriminant analysis. The SDPC method based on the separation degree priority proposed is a novel and effective wavelength selection method. It only needs to calculate the distance between two types of spectral sets at each wavelength with low computational complexity and good performance. In addition to combining with kNN, SDPC can also be combined with other classifier algorithms (e.g. PLS-DA, PCA-LDA) to expand the application scope of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助碧蓝青梦采纳,获得10
刚刚
prof.zhang发布了新的文献求助10
刚刚
刚刚
闪光的flash完成签到 ,获得积分10
1秒前
1秒前
自行车v完成签到,获得积分10
2秒前
火车王完成签到,获得积分10
2秒前
所所应助留胡子的依萱采纳,获得10
3秒前
可爱的函函应助WLM采纳,获得10
3秒前
滴滴发布了新的文献求助10
3秒前
4秒前
田様应助尼尼采纳,获得30
5秒前
guan完成签到,获得积分10
5秒前
飞飞飞发布了新的文献求助20
5秒前
畅快的店员关注了科研通微信公众号
6秒前
科研通AI6应助溪鱼采纳,获得10
7秒前
Tian发布了新的文献求助10
7秒前
尊敬谷波完成签到,获得积分10
9秒前
10秒前
10秒前
无花果应助apach采纳,获得10
11秒前
滴滴完成签到,获得积分20
11秒前
12秒前
香蕉觅云应助Pyrene采纳,获得10
12秒前
12秒前
科研通AI6应助dnbe采纳,获得10
12秒前
13秒前
陈诗婷完成签到,获得积分10
13秒前
14秒前
无心发布了新的文献求助10
14秒前
14秒前
334关闭了334文献求助
14秒前
阳光铭媚发布了新的文献求助10
14秒前
浮游应助从容的代真采纳,获得20
15秒前
joodeuk完成签到,获得积分10
15秒前
jia发布了新的文献求助10
16秒前
16秒前
留胡子的依萱给留胡子的依萱的求助进行了留言
16秒前
乐乐应助dddjs采纳,获得10
17秒前
XXX发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105