Spectral separation degree method for Vis-NIR spectroscopic discriminant analysis of milk powder adulteration

波长 化学 线性判别分析 近红外光谱 学位(音乐) 分析化学(期刊) 色谱法 模式识别(心理学) 人工智能 计算机科学 材料科学 光学 物理 光电子学 声学
作者
Lu Yuan,Xianghui Chen,Yongqi Huang,Jiemei Chen,Tao Pan
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:301: 122975-122975 被引量:2
标识
DOI:10.1016/j.saa.2023.122975
摘要

Adulteration detection of adding ordinary milk powder to high-end dedicated milk powder is challenging due to the high similarity. Using visible and near-infrared (Vis-NIR) spectroscopy combined with k-nearest neighbor (kNN), the discriminant analysis models of pure brand milk powder and its adulterated milk powder (including unary and binary adulteration) were established. Standard normal variate transformation and Norris derivative filter (D = 2, S = 11, G = 5) were jointly used for spectral preprocessing. The separation degree and separation degree spectrum between two spectral populations were proposed and used to describe the differences between the two spectral populations, based on which, a novel wavelength selection method, named separation degree priority combination-kNN (SDPC-kNN), was proposed for wavelength optimization. SDPC-wavelength step-by-step phase-out-kNN (SDPC-WSP-kNN) models were established to further eliminate interference wavelengths and improve the model effect. The nineteen wavelengths in long-NIR region (1100-2498 nm) with a separation degree greater than 0 were used to establish single-wavelength kNN models, the total recognition-accuracy rates in prediction (RARP) all reached 100%, and the total recognition-accuracy rate in validation (RARV) of the optimal model (1174 nm) reached 97.4%. In the visible (400-780 nm) and short-NIR (780-1100 nm) regions with the separation degree all less than 0, the SDPC-WSP-kNN models were established. The two optimal models (N = 7, 22) were determined, the RARP values reached 100% and 97.4% respectively, and the RARV values reached 96.1% and 94.3% respectively. The results indicated that Vis-NIR spectroscopy combined with few-wavelength kNN has feasibility of high-precision milk powder adulteration discriminant. The few-wavelength schemes provided a valuable reference for designing dedicated miniaturized spectrometer of different spectral regions. The separation degree spectrum and SDPC can be used to improve the performance of spectral discriminant analysis. The SDPC method based on the separation degree priority proposed is a novel and effective wavelength selection method. It only needs to calculate the distance between two types of spectral sets at each wavelength with low computational complexity and good performance. In addition to combining with kNN, SDPC can also be combined with other classifier algorithms (e.g. PLS-DA, PCA-LDA) to expand the application scope of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助小熊猫采纳,获得10
2秒前
zhoujian完成签到 ,获得积分10
3秒前
踏实凡阳完成签到,获得积分10
3秒前
4秒前
5秒前
7秒前
marvelou完成签到,获得积分10
7秒前
秃头小宝贝完成签到,获得积分10
8秒前
充电宝应助倾听采纳,获得10
8秒前
研0被骂儿发布了新的文献求助10
9秒前
小广发布了新的文献求助10
10秒前
洁净艳一完成签到,获得积分10
10秒前
may发布了新的文献求助10
10秒前
11秒前
Ava应助昏睡的小郑采纳,获得10
11秒前
15秒前
随波逐流发布了新的文献求助10
15秒前
科研通AI2S应助lqh0211采纳,获得10
15秒前
15秒前
16秒前
17秒前
香蕉觅云应助守拙采纳,获得10
17秒前
111发布了新的文献求助10
18秒前
18秒前
闪闪凡白完成签到,获得积分10
20秒前
21秒前
zyt应助柠萌采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
司空大有应助科研通管家采纳,获得10
22秒前
一一应助科研通管家采纳,获得30
22秒前
一一应助科研通管家采纳,获得30
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
小小橙发布了新的文献求助10
23秒前
23秒前
23秒前
23秒前
23秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084836
求助须知:如何正确求助?哪些是违规求助? 2737894
关于积分的说明 7547256
捐赠科研通 2387494
什么是DOI,文献DOI怎么找? 1265999
科研通“疑难数据库(出版商)”最低求助积分说明 613212
版权声明 598429