Machine-Learning Ensemble Model Prediction of Northward Shift in Potato Cyst Nematodes (Globodera Rostochiensis and G. Pallida) Distribution Under Climate Change Conditions

喙突球绦虫 气候变化 苍球蚧 集合预报 分布(数学) 环境科学 生物 生态学 地理 数学 气象学 线虫 茄科 数学分析 生物化学 基因
作者
Yitong He,Guanjin Wang,Yonglin Ren,Shan Gao,Dong Chu,Simon McKirdy
标识
DOI:10.2139/ssrn.4486741
摘要

Potato Cyst Nematodes (PCNs) are a significant threat to agriculture and horticulture, having caused substantial damage in many countries. Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies, especially given the impact of climate change on pest species invasion and distribution. Machine-Learning (ML), specifically ensemble models, has emerged as a powerful tool in predicting species distributions due to their ability to learn and make predictions based on complex data sets. Thus, this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions, providing the initial element for invasion risk assessment. We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors. Then five machine learning models were employed to build two groups of ensembles, multi-algorithm ensembles (EMA) and single-algorithm ensembles (ESA), and compared their performances. Results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes. However, the total area of suitable regions will not change significantly, occupying 16-20% of the total land surface (18% under current conditions). Also, in this research, the EMA did not always perform better than the ESA, and the ESA of Artificial Neural Network gave the highest performance while being cost-effective. This research alerts policymakers and practitioners to the risk of PCNs’ incursion into new regions. Additionally, this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发嗲的高跟鞋完成签到 ,获得积分10
刚刚
斯文芷荷发布了新的文献求助10
刚刚
zcj发布了新的文献求助10
刚刚
老十七应助张佳明采纳,获得10
刚刚
Lucas应助AteeqBaloch采纳,获得10
刚刚
椰子糖完成签到,获得积分10
刚刚
刚刚
XHH1994发布了新的文献求助10
2秒前
辛勤的八宝粥完成签到,获得积分10
2秒前
科研小白发布了新的文献求助10
2秒前
smottom应助依尔伞采纳,获得20
2秒前
罗小甜发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
carrie应助文件撤销了驳回
5秒前
明理的灭绝完成签到,获得积分10
5秒前
斯文芷荷完成签到,获得积分20
6秒前
沐风完成签到,获得积分10
6秒前
7秒前
赘婿应助特大包包采纳,获得10
7秒前
wanci应助XHH1994采纳,获得10
7秒前
落落完成签到 ,获得积分10
7秒前
陈木木完成签到,获得积分10
7秒前
独特的沛凝完成签到,获得积分10
8秒前
shinn发布了新的文献求助10
8秒前
8秒前
英俊的铭应助Ninico采纳,获得10
8秒前
Rondab应助科研通管家采纳,获得10
8秒前
Rondab应助科研通管家采纳,获得10
8秒前
ZzZz发布了新的文献求助30
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Du发布了新的文献求助10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969398
求助须知:如何正确求助?哪些是违规求助? 3514239
关于积分的说明 11173064
捐赠科研通 3249531
什么是DOI,文献DOI怎么找? 1794934
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804827