Machine-Learning Ensemble Model Prediction of Northward Shift in Potato Cyst Nematodes (Globodera Rostochiensis and G. Pallida) Distribution Under Climate Change Conditions

喙突球绦虫 气候变化 苍球蚧 集合预报 分布(数学) 环境科学 生物 生态学 地理 数学 气象学 线虫 茄科 数学分析 生物化学 基因
作者
Yitong He,Guanjin Wang,Yonglin Ren,Shan Gao,Dong Chu,Simon McKirdy
标识
DOI:10.2139/ssrn.4486741
摘要

Potato Cyst Nematodes (PCNs) are a significant threat to agriculture and horticulture, having caused substantial damage in many countries. Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies, especially given the impact of climate change on pest species invasion and distribution. Machine-Learning (ML), specifically ensemble models, has emerged as a powerful tool in predicting species distributions due to their ability to learn and make predictions based on complex data sets. Thus, this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions, providing the initial element for invasion risk assessment. We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors. Then five machine learning models were employed to build two groups of ensembles, multi-algorithm ensembles (EMA) and single-algorithm ensembles (ESA), and compared their performances. Results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes. However, the total area of suitable regions will not change significantly, occupying 16-20% of the total land surface (18% under current conditions). Also, in this research, the EMA did not always perform better than the ESA, and the ESA of Artificial Neural Network gave the highest performance while being cost-effective. This research alerts policymakers and practitioners to the risk of PCNs’ incursion into new regions. Additionally, this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JuPP完成签到,获得积分10
刚刚
科目三应助脱壳金蝉采纳,获得10
刚刚
不止完成签到,获得积分10
刚刚
完美世界应助朴素的项链采纳,获得10
刚刚
刚刚
天天快乐应助xxxxxxx采纳,获得10
1秒前
华仔应助七田皿采纳,获得10
1秒前
大个应助帅哥采纳,获得10
1秒前
领导范儿应助可靠板栗采纳,获得10
1秒前
2秒前
2秒前
xw完成签到,获得积分10
2秒前
碑海北发布了新的文献求助10
2秒前
3秒前
3秒前
stellachen完成签到,获得积分10
3秒前
樱sky完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
酷酷纸飞机完成签到,获得积分10
4秒前
4秒前
baiyuecheng完成签到,获得积分10
5秒前
许源智啊完成签到,获得积分10
5秒前
5秒前
一次性过完成签到,获得积分10
6秒前
wanci应助细腻的书雁采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
李文俊是我太孙完成签到,获得积分10
7秒前
baiyuecheng发布了新的文献求助10
7秒前
7秒前
阿喔发布了新的文献求助10
7秒前
8秒前
hihigood发布了新的文献求助10
8秒前
冬冬发布了新的文献求助10
8秒前
李健应助hehe采纳,获得10
8秒前
邓年念完成签到,获得积分10
9秒前
kiwi发布了新的文献求助200
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594