Machine-Learning Ensemble Model Prediction of Northward Shift in Potato Cyst Nematodes (Globodera Rostochiensis and G. Pallida) Distribution Under Climate Change Conditions

喙突球绦虫 气候变化 苍球蚧 集合预报 分布(数学) 环境科学 生物 生态学 地理 数学 气象学 线虫 茄科 数学分析 生物化学 基因
作者
Yitong He,Guanjin Wang,Yonglin Ren,Shan Gao,Dong Chu,Simon McKirdy
标识
DOI:10.2139/ssrn.4486741
摘要

Potato Cyst Nematodes (PCNs) are a significant threat to agriculture and horticulture, having caused substantial damage in many countries. Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies, especially given the impact of climate change on pest species invasion and distribution. Machine-Learning (ML), specifically ensemble models, has emerged as a powerful tool in predicting species distributions due to their ability to learn and make predictions based on complex data sets. Thus, this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions, providing the initial element for invasion risk assessment. We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors. Then five machine learning models were employed to build two groups of ensembles, multi-algorithm ensembles (EMA) and single-algorithm ensembles (ESA), and compared their performances. Results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes. However, the total area of suitable regions will not change significantly, occupying 16-20% of the total land surface (18% under current conditions). Also, in this research, the EMA did not always perform better than the ESA, and the ESA of Artificial Neural Network gave the highest performance while being cost-effective. This research alerts policymakers and practitioners to the risk of PCNs’ incursion into new regions. Additionally, this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿港猫妖完成签到,获得积分20
1秒前
chen完成签到,获得积分10
1秒前
2秒前
阿湫发布了新的文献求助10
2秒前
2秒前
3秒前
崔悦欣发布了新的文献求助10
3秒前
希望天下0贩的0应助kk子采纳,获得10
4秒前
丰富的不惜完成签到,获得积分10
6秒前
票子发布了新的文献求助10
6秒前
华仔应助魏莱采纳,获得10
6秒前
F123发布了新的文献求助10
7秒前
shen发布了新的文献求助10
8秒前
8秒前
苗觉觉完成签到,获得积分10
9秒前
帕金森完成签到,获得积分10
10秒前
活力的妙芙完成签到,获得积分10
10秒前
赘婿应助疯子魔煞采纳,获得10
11秒前
橙橙橙完成签到,获得积分10
11秒前
11秒前
你好CDY完成签到,获得积分10
12秒前
12秒前
12秒前
万能图书馆应助希尔伯特采纳,获得10
12秒前
我是老大应助123采纳,获得10
13秒前
芒果小鹌鹑完成签到,获得积分10
14秒前
上官若男应助F123采纳,获得10
15秒前
Singularity应助邢文瑞采纳,获得10
16秒前
c123发布了新的文献求助10
17秒前
嘉嘉琦发布了新的文献求助10
18秒前
wanci应助QWDSA采纳,获得10
20秒前
20秒前
愉快静曼发布了新的文献求助10
23秒前
乐乐乐乐乐乐应助科学家采纳,获得10
24秒前
99完成签到,获得积分10
24秒前
24秒前
友好傲白完成签到,获得积分10
24秒前
FL完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
清新的绿海完成签到,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048