Machine-Learning Ensemble Model Prediction of Northward Shift in Potato Cyst Nematodes (Globodera Rostochiensis and G. Pallida) Distribution Under Climate Change Conditions

喙突球绦虫 气候变化 苍球蚧 集合预报 分布(数学) 环境科学 生物 生态学 地理 数学 气象学 线虫 茄科 数学分析 生物化学 基因
作者
Yitong He,Guanjin Wang,Yonglin Ren,Shan Gao,Dong Chu,Simon McKirdy
标识
DOI:10.2139/ssrn.4486741
摘要

Potato Cyst Nematodes (PCNs) are a significant threat to agriculture and horticulture, having caused substantial damage in many countries. Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies, especially given the impact of climate change on pest species invasion and distribution. Machine-Learning (ML), specifically ensemble models, has emerged as a powerful tool in predicting species distributions due to their ability to learn and make predictions based on complex data sets. Thus, this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions, providing the initial element for invasion risk assessment. We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors. Then five machine learning models were employed to build two groups of ensembles, multi-algorithm ensembles (EMA) and single-algorithm ensembles (ESA), and compared their performances. Results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes. However, the total area of suitable regions will not change significantly, occupying 16-20% of the total land surface (18% under current conditions). Also, in this research, the EMA did not always perform better than the ESA, and the ESA of Artificial Neural Network gave the highest performance while being cost-effective. This research alerts policymakers and practitioners to the risk of PCNs’ incursion into new regions. Additionally, this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuzhanyu发布了新的文献求助10
2秒前
yuanyueyue完成签到,获得积分10
2秒前
Akim应助YUMI采纳,获得10
2秒前
勤恳的路人完成签到,获得积分10
3秒前
3秒前
华仔应助小阳采纳,获得10
3秒前
Jia发布了新的文献求助10
3秒前
4秒前
4秒前
顺利鱼发布了新的文献求助10
5秒前
哈哈哈aaao发布了新的文献求助10
5秒前
7秒前
bkagyin应助中中采纳,获得20
7秒前
量子星尘发布了新的文献求助10
7秒前
LiLi完成签到,获得积分10
7秒前
虚荣的泥猴桃完成签到 ,获得积分10
9秒前
9秒前
澳澳发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
无聊的难敌完成签到 ,获得积分10
9秒前
坤123发布了新的文献求助10
9秒前
10秒前
我很懵逼完成签到,获得积分10
10秒前
Owen应助潮汐采纳,获得10
10秒前
乐乐应助William采纳,获得10
10秒前
端庄新柔完成签到,获得积分20
11秒前
在水一方应助小玲哥采纳,获得10
11秒前
小二郎应助Sandra采纳,获得10
11秒前
大模型应助流氓煎蛋采纳,获得10
12秒前
鹅鹅鹅发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
落花生发布了新的文献求助10
14秒前
刘启迪完成签到,获得积分10
14秒前
微笑的天抒完成签到,获得积分10
15秒前
15秒前
Peter11455完成签到,获得积分10
15秒前
小水发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711166
求助须知:如何正确求助?哪些是违规求助? 5202553
关于积分的说明 15263462
捐赠科研通 4863587
什么是DOI,文献DOI怎么找? 2610793
邀请新用户注册赠送积分活动 1561077
关于科研通互助平台的介绍 1518598