Machine-Learning Ensemble Model Prediction of Northward Shift in Potato Cyst Nematodes (Globodera Rostochiensis and G. Pallida) Distribution Under Climate Change Conditions

喙突球绦虫 气候变化 苍球蚧 集合预报 分布(数学) 环境科学 生物 生态学 地理 数学 气象学 线虫 茄科 数学分析 生物化学 基因
作者
Yitong He,Guanjin Wang,Yonglin Ren,Shan Gao,Dong Chu,Simon McKirdy
标识
DOI:10.2139/ssrn.4486741
摘要

Potato Cyst Nematodes (PCNs) are a significant threat to agriculture and horticulture, having caused substantial damage in many countries. Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies, especially given the impact of climate change on pest species invasion and distribution. Machine-Learning (ML), specifically ensemble models, has emerged as a powerful tool in predicting species distributions due to their ability to learn and make predictions based on complex data sets. Thus, this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions, providing the initial element for invasion risk assessment. We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors. Then five machine learning models were employed to build two groups of ensembles, multi-algorithm ensembles (EMA) and single-algorithm ensembles (ESA), and compared their performances. Results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes. However, the total area of suitable regions will not change significantly, occupying 16-20% of the total land surface (18% under current conditions). Also, in this research, the EMA did not always perform better than the ESA, and the ESA of Artificial Neural Network gave the highest performance while being cost-effective. This research alerts policymakers and practitioners to the risk of PCNs’ incursion into new regions. Additionally, this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助有梦想的人采纳,获得10
1秒前
努力努力再努力完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
SciGPT应助senlin采纳,获得10
4秒前
4秒前
4秒前
梦璃发布了新的文献求助10
4秒前
6秒前
郜雨寒发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
9秒前
senlin发布了新的文献求助10
9秒前
FashionBoy应助风中书易采纳,获得10
10秒前
miketyson完成签到,获得积分10
10秒前
12秒前
wanci应助雪落采纳,获得10
13秒前
14秒前
14秒前
Akim应助AOPs采纳,获得10
17秒前
酒九完成签到,获得积分10
18秒前
有梦想的人完成签到,获得积分10
18秒前
19秒前
vv完成签到,获得积分10
20秒前
20秒前
小二郎应助科研通管家采纳,获得30
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
maox1aoxin应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
maox1aoxin应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
21秒前
老阶梯应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243862
求助须知:如何正确求助?哪些是违规求助? 2887702
关于积分的说明 8249629
捐赠科研通 2556367
什么是DOI,文献DOI怎么找? 1384486
科研通“疑难数据库(出版商)”最低求助积分说明 649858
邀请新用户注册赠送积分活动 625809