Artificial intelligence for carbon emissions using system of systems theory

人工智能 计算机科学 温室气体 碳足迹 全球变暖 相互依存 碳纤维 气候变化 机器学习 算法 法学 生态学 政治学 生物 复合数
作者
Loveleen Gaur,Anam Afaq,Gursimar Kaur Arora,Nabeel Khan
出处
期刊:Ecological Informatics [Elsevier]
卷期号:76: 102165-102165 被引量:16
标识
DOI:10.1016/j.ecoinf.2023.102165
摘要

The impact of artificial intelligence (AI) on the environment is the subject of discourse, with arguments for both positive and negative effects. There is a fine line between AI for good and AI for environmental degradation. Today, companies want to seize the benefits of AI, which distinctively involves reducing the company's carbon footprint. However, AI's carbon emissions differ as per the techniques involved in training it. As the saying goes, a coin always has two sides. Therefore, it cannot be denied that AI can be an effective tool for combating climate change, but its role in contributing to carbon emissions cannot be ignored. Multiple studies indicate that AI could be the game-changer in staving off anthropogenic climatic changes due to the deterioration of the environment and global warming. This double-edged relationship and interdependency of AI and carbon emissions are represented through a system of systems (SoS) approach. SoS states that a plan is created through multiple smaller systems, creating complexity in the design and vice versa. A complex system can be assumed as the world in general, where two individual independent systems AI and carbon emissions, when in interaction, create a complex complementary and contradictory relation, adding to the convolution of the system. This connection is demonstrated by conducting a network analysis and calculating the carbon emissions of six machine learning (ML) algorithms and deep learning (DL) models with different datasets but the same hyperparameters on a carbon emission calculator created through AI algorithms. The primary idea of this study is to encourage the AI society to create efficient AI models that may be used without compromising environmental issues. The focus should be on practicing sustainable AI, that is, sustainability from data collection to model deployment, throughout the lifecycle of AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷你蛋黄应助清爽难敌采纳,获得80
2秒前
所所应助一裤子灰采纳,获得10
2秒前
2秒前
3242晶发布了新的文献求助10
2秒前
ymly25发布了新的文献求助10
2秒前
上官若男应助doudou采纳,获得10
3秒前
传奇3应助呆梨医生采纳,获得10
4秒前
hu发布了新的文献求助10
4秒前
小彩彩完成签到,获得积分10
4秒前
5秒前
一方通行完成签到 ,获得积分10
6秒前
刘志斌发布了新的文献求助10
7秒前
3242晶完成签到,获得积分10
8秒前
星月发布了新的文献求助10
11秒前
11秒前
ymly25完成签到,获得积分10
11秒前
BetterH完成签到 ,获得积分10
11秒前
Neko发布了新的文献求助10
11秒前
一只猫发布了新的文献求助10
12秒前
12秒前
深海鳕鱼子完成签到,获得积分10
12秒前
希望天下0贩的0应助Ann采纳,获得10
13秒前
13秒前
斯文败类应助日川冈坂采纳,获得10
13秒前
炉子发布了新的文献求助10
15秒前
丁昆完成签到,获得积分10
16秒前
Akim应助Hedy采纳,获得20
17秒前
17秒前
百招完成签到,获得积分10
17秒前
Janisa完成签到,获得积分10
18秒前
冰冰完成签到 ,获得积分10
19秒前
19秒前
19秒前
20秒前
繁荣的秋白完成签到,获得积分10
20秒前
yy发布了新的社区帖子
21秒前
十三客完成签到,获得积分10
21秒前
22秒前
22秒前
勤劳赛凤发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187