Metal sulfide materials, endowed with ordered mesoporosity, offer ample opportunities in a variety of renewable energy applications due to the integration of intrinsic functional properties and enhanced reaction kinetics. Unfortunately, ordered mesoporous metal sulfides have rarely been reported due to immense synthetic difficulties by conventional self-assembly approaches. Herein, we explore a compatible coordinated ionic self-assembly strategy for the facile synthesis of highly ordered mesoporous Pt2Sn2S6 networks with templated mesopores at 4.2 nm in hexagonal mesophase (space group p6mm) and highly accessible surface area. The self-assembly mechanism is further investigated, revealing the role of the cationic surfactant and anionic sulfur pair in balancing suitable interaction and the utilized ammonia and ligand to retard fast precipitation of metal and sulfur source for effective assembly. Owing to the combination of ordered porosity and intrinsic functionality, the mesoporous Pt2Sn2S6 after crystallization exhibits excellent activity (overpotential of 13 mV, Tafel slope of 34 mV dec-1) and long-term durability over 100 h for electrochemical hydrogen evolution reaction (HER) in alkaline solution. Our study provides a toolbox for the rational synthesis of functional mesoporous compositions as advanced model platforms for future versatile technologies.