Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助小5采纳,获得10
刚刚
传奇3应助chaofan采纳,获得10
刚刚
1秒前
粗暴的背包完成签到,获得积分10
1秒前
1秒前
从容白羊完成签到,获得积分10
1秒前
东方元语应助张哈哈采纳,获得20
1秒前
虚心求学完成签到,获得积分10
1秒前
1秒前
小邹完成签到,获得积分10
2秒前
慕青应助朴素浩然采纳,获得10
2秒前
平淡沛蓝完成签到 ,获得积分10
2秒前
桐桐应助芷莯采纳,获得10
3秒前
杨子航发布了新的文献求助10
3秒前
杨昌琪发布了新的文献求助10
3秒前
虎桔发布了新的文献求助10
3秒前
Zhangxinhao发布了新的文献求助10
4秒前
今后应助韩明轩采纳,获得10
4秒前
我来文献求助了完成签到,获得积分10
4秒前
欢呼的丁真完成签到,获得积分10
4秒前
迟梦琪发布了新的文献求助10
4秒前
不安的采白完成签到,获得积分10
4秒前
汉堡包应助阿修罗采纳,获得10
4秒前
4秒前
深海渔完成签到,获得积分20
5秒前
6秒前
王WJ发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
zoey发布了新的文献求助10
7秒前
7秒前
11完成签到,获得积分10
7秒前
7秒前
戚薇发布了新的文献求助10
8秒前
鱿鱼完成签到,获得积分10
8秒前
ww完成签到 ,获得积分10
8秒前
Unshouable完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246