Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天应助Yaon-Xu采纳,获得30
1秒前
2秒前
123456qqqq发布了新的文献求助10
2秒前
yznfly应助Lny采纳,获得50
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
NexusExplorer应助PHDpeng采纳,获得10
5秒前
大白发布了新的文献求助30
5秒前
爆米花应助Wu采纳,获得10
7秒前
cj完成签到 ,获得积分10
8秒前
8秒前
yuaner完成签到,获得积分10
9秒前
9秒前
苏远山爱吃西红柿完成签到,获得积分10
9秒前
11秒前
yuaner发布了新的文献求助10
12秒前
14秒前
Peng发布了新的文献求助10
14秒前
大白完成签到,获得积分10
15秒前
默默的恶天关注了科研通微信公众号
15秒前
英姑应助薏_采纳,获得10
15秒前
15秒前
邓佳鑫Alan应助Yaon-Xu采纳,获得10
15秒前
慕青应助Lusteri采纳,获得10
16秒前
愉快的夏菡完成签到,获得积分20
16秒前
17秒前
LHT完成签到,获得积分10
17秒前
18秒前
小蚂蚁发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
19秒前
lq完成签到,获得积分10
20秒前
香蕉大侠完成签到 ,获得积分10
20秒前
情怀应助ywh采纳,获得10
20秒前
Wu发布了新的文献求助10
21秒前
Leo给Leo的求助进行了留言
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617