Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪网络完成签到,获得积分10
刚刚
3秒前
Connor发布了新的文献求助10
7秒前
zzb完成签到,获得积分20
8秒前
9秒前
ll发布了新的文献求助10
9秒前
10秒前
所所应助xuyuhao采纳,获得10
11秒前
苏卿发布了新的文献求助10
13秒前
SuperZzz完成签到,获得积分10
14秒前
asparagine发布了新的文献求助10
14秒前
14秒前
受伤雨南发布了新的文献求助10
15秒前
Jasper应助why采纳,获得10
16秒前
科研通AI2S应助haohaha采纳,获得10
16秒前
科目三应助haohaha采纳,获得10
16秒前
CipherSage应助飞飞鱼采纳,获得20
17秒前
烟花应助艾斯采纳,获得10
17秒前
linkman发布了新的文献求助10
19秒前
19秒前
情怀应助华W采纳,获得10
21秒前
21秒前
李爱国应助谦让寄容采纳,获得10
21秒前
23秒前
Heng发布了新的文献求助10
24秒前
25秒前
lixy完成签到,获得积分10
25秒前
瑶625发布了新的文献求助30
25秒前
27秒前
27秒前
28秒前
JamesPei应助asparagine采纳,获得10
28秒前
29秒前
明亮涫发布了新的文献求助10
29秒前
29秒前
lyc发布了新的文献求助30
30秒前
爆米花应助zhouzhou采纳,获得10
30秒前
xuyuhao完成签到,获得积分10
31秒前
难过千易发布了新的文献求助10
31秒前
why发布了新的文献求助10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999224
求助须知:如何正确求助?哪些是违规求助? 3538589
关于积分的说明 11274664
捐赠科研通 3277444
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080