Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DUAN完成签到,获得积分10
刚刚
科研小蔡发布了新的文献求助10
1秒前
田di完成签到 ,获得积分10
1秒前
2秒前
科研通AI6应助雷培采纳,获得10
3秒前
3秒前
actor2006发布了新的文献求助100
3秒前
3秒前
3秒前
3秒前
无花果应助FFFF采纳,获得30
3秒前
tantan完成签到,获得积分10
4秒前
踏实采波完成签到,获得积分10
5秒前
sw发布了新的文献求助10
6秒前
6秒前
weita完成签到,获得积分10
7秒前
共享精神应助不吃橘子采纳,获得10
8秒前
8秒前
在水一方应助a7489420采纳,获得10
8秒前
Lucas应助问凝采纳,获得10
9秒前
重要的天空完成签到,获得积分10
10秒前
ren发布了新的文献求助10
10秒前
斯文败类应助天才采纳,获得10
10秒前
小蘑菇应助勤劳绿柳采纳,获得10
10秒前
黑马王子发布了新的文献求助10
13秒前
姜露萍发布了新的文献求助10
13秒前
天天快乐应助科研小蔡采纳,获得10
13秒前
sunstar发布了新的文献求助10
13秒前
14秒前
问凝完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
科研糊涂神完成签到,获得积分10
15秒前
cc完成签到 ,获得积分10
15秒前
18秒前
19秒前
天天快乐应助yating采纳,获得10
19秒前
小蘑菇应助莘莘采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526879
求助须知:如何正确求助?哪些是违规求助? 4616832
关于积分的说明 14556118
捐赠科研通 4555346
什么是DOI,文献DOI怎么找? 2496326
邀请新用户注册赠送积分活动 1476628
关于科研通互助平台的介绍 1448142