Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白鹭发布了新的文献求助10
刚刚
默默的奇迹完成签到,获得积分20
1秒前
xxfsx应助enen采纳,获得10
1秒前
2秒前
hhh完成签到 ,获得积分10
2秒前
2秒前
小婷发布了新的文献求助10
2秒前
XinG完成签到,获得积分10
3秒前
pcr163应助Unlung采纳,获得200
3秒前
4秒前
anders完成签到 ,获得积分10
5秒前
wins完成签到,获得积分10
5秒前
zzh发布了新的文献求助10
5秒前
科研通AI5应助周杰采纳,获得30
5秒前
怎么又困了完成签到,获得积分10
6秒前
霸气若男发布了新的文献求助10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
FashionBoy应助枕安采纳,获得10
9秒前
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153679
求助须知:如何正确求助?哪些是违规求助? 4349269
关于积分的说明 13541565
捐赠科研通 4191976
什么是DOI,文献DOI怎么找? 2299237
邀请新用户注册赠送积分活动 1299236
关于科研通互助平台的介绍 1244260