Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中平完成签到 ,获得积分10
刚刚
herococa应助123采纳,获得10
刚刚
刚刚
wuyou992完成签到,获得积分10
刚刚
小仙女发布了新的文献求助10
刚刚
懒羊羊发布了新的文献求助10
1秒前
红箭烟雨完成签到,获得积分10
1秒前
yanziwu94完成签到,获得积分10
1秒前
2秒前
neo完成签到,获得积分10
3秒前
3秒前
3秒前
Zllu完成签到,获得积分10
4秒前
YJH完成签到,获得积分10
4秒前
善良梦竹完成签到 ,获得积分10
4秒前
姜老师发布了新的文献求助10
4秒前
江你一军完成签到,获得积分10
4秒前
5秒前
宏哥完成签到,获得积分10
5秒前
lzhe完成签到,获得积分10
6秒前
小仙女完成签到,获得积分10
6秒前
zqingqing完成签到,获得积分10
6秒前
lawang发布了新的文献求助10
6秒前
gegi完成签到,获得积分10
7秒前
团团完成签到,获得积分10
7秒前
潇洒台灯发布了新的文献求助10
7秒前
zhuzhu发布了新的文献求助10
7秒前
hkh发布了新的文献求助10
7秒前
cttc完成签到,获得积分10
8秒前
李健应助yyyyyyy111采纳,获得10
8秒前
lilikou发布了新的文献求助10
8秒前
兔兔完成签到,获得积分10
8秒前
8秒前
小鬼完成签到 ,获得积分10
8秒前
华山完成签到,获得积分10
9秒前
从容的狗发布了新的文献求助10
10秒前
赛妮完成签到,获得积分10
10秒前
栗子芸完成签到,获得积分10
10秒前
yqcj59完成签到,获得积分10
11秒前
张宁波完成签到,获得积分0
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651622
求助须知:如何正确求助?哪些是违规求助? 4785400
关于积分的说明 15054736
捐赠科研通 4810228
什么是DOI,文献DOI怎么找? 2573047
邀请新用户注册赠送积分活动 1528941
关于科研通互助平台的介绍 1487934