Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助NEW采纳,获得10
1秒前
3秒前
脑洞疼应助科研顺采纳,获得10
4秒前
xkk完成签到,获得积分10
4秒前
4秒前
思源应助唠叨的觅海采纳,获得10
5秒前
共享精神应助gong采纳,获得10
7秒前
有魅力的含海完成签到,获得积分10
7秒前
lyh发布了新的文献求助10
10秒前
10秒前
wqty关注了科研通微信公众号
10秒前
12秒前
大豹子发布了新的文献求助150
14秒前
CodeCraft应助wangdong采纳,获得10
15秒前
疯狂加载ing完成签到,获得积分0
17秒前
17秒前
baner发布了新的文献求助10
18秒前
1816013153发布了新的文献求助10
19秒前
科目三应助ZhouQixing采纳,获得10
20秒前
22秒前
英俊的铭应助疯狂加载ing采纳,获得10
23秒前
23秒前
奥沙利楠完成签到,获得积分10
25秒前
25秒前
hanli完成签到,获得积分20
25秒前
钰宁完成签到,获得积分10
25秒前
打打应助Steven采纳,获得10
28秒前
29秒前
66666发布了新的文献求助10
30秒前
斯文败类应助云水雾心采纳,获得10
31秒前
hanli发布了新的文献求助10
33秒前
华仔应助虚心碧采纳,获得10
33秒前
脑洞疼应助大豹子采纳,获得10
34秒前
35秒前
领导范儿应助细腻的深白采纳,获得10
36秒前
NEW发布了新的文献求助10
39秒前
41秒前
42秒前
sssshhh发布了新的文献求助10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642937
关于积分的说明 14669867
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619