亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 哲学 认识论 古生物学 生物
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助默默的阑悦采纳,获得10
14秒前
ASZXDW发布了新的文献求助10
43秒前
58秒前
Himejima完成签到,获得积分0
1分钟前
玛琳卡迪马完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
wendy发布了新的文献求助10
1分钟前
2分钟前
布布发布了新的文献求助30
2分钟前
ding应助wendy采纳,获得10
2分钟前
盐植物应助张清采纳,获得10
2分钟前
布布完成签到,获得积分10
2分钟前
华仔应助布布采纳,获得10
2分钟前
Leon应助科研通管家采纳,获得20
3分钟前
Leon应助科研通管家采纳,获得20
3分钟前
Leon应助科研通管家采纳,获得20
3分钟前
3分钟前
4分钟前
彭于晏应助计时器响了采纳,获得30
4分钟前
江文完成签到,获得积分20
4分钟前
4分钟前
江文发布了新的文献求助30
4分钟前
4分钟前
wendy发布了新的文献求助10
4分钟前
4分钟前
冬去春来完成签到 ,获得积分10
5分钟前
Blessedone完成签到,获得积分10
5分钟前
Leon应助科研通管家采纳,获得20
5分钟前
5分钟前
大灰狼发布了新的文献求助30
5分钟前
长度2到发布了新的文献求助10
6分钟前
实力不允许完成签到 ,获得积分10
6分钟前
zwj完成签到,获得积分20
6分钟前
长度2到完成签到,获得积分10
6分钟前
ktw完成签到,获得积分10
6分钟前
景行行止完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544431
求助须知:如何正确求助?哪些是违规求助? 3121630
关于积分的说明 9348120
捐赠科研通 2819899
什么是DOI,文献DOI怎么找? 1550514
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273