Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
蓝莓发布了新的文献求助20
刚刚
余哈哈完成签到,获得积分10
刚刚
归去来兮应助88采纳,获得10
1秒前
1秒前
深情安青应助三点半采纳,获得10
1秒前
Leo000007完成签到,获得积分10
1秒前
rr完成签到,获得积分10
2秒前
2秒前
2秒前
Karma发布了新的文献求助10
2秒前
冷傲之玉发布了新的文献求助10
3秒前
3秒前
武百招完成签到,获得积分10
3秒前
4秒前
Jasper应助DSDG采纳,获得10
4秒前
4秒前
4秒前
4秒前
无限的胜发布了新的文献求助10
5秒前
酷波er应助老实善愁采纳,获得10
5秒前
5秒前
CCC发布了新的文献求助10
6秒前
斯文败类应助英勇青文采纳,获得10
6秒前
Rachel完成签到,获得积分10
6秒前
6秒前
帅气的秘密完成签到,获得积分10
6秒前
Archer发布了新的文献求助10
6秒前
Lemontree发布了新的文献求助10
7秒前
平淡思远完成签到,获得积分10
7秒前
8秒前
追寻忆枫发布了新的文献求助30
8秒前
8秒前
康园发布了新的文献求助10
8秒前
FashionBoy应助huminjie采纳,获得20
9秒前
9秒前
黑猫乾杯应助you采纳,获得10
9秒前
9秒前
taiyang完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612759
求助须知:如何正确求助?哪些是违规求助? 4697823
关于积分的说明 14895857
捐赠科研通 4734427
什么是DOI,文献DOI怎么找? 2546674
邀请新用户注册赠送积分活动 1510710
关于科研通互助平台的介绍 1473494