已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
寒冷听枫完成签到,获得积分20
3秒前
4秒前
skdfz168完成签到 ,获得积分10
4秒前
茴香豆完成签到 ,获得积分10
6秒前
6秒前
大棒槌发布了新的文献求助10
8秒前
郑州12138完成签到,获得积分10
9秒前
慕青应助yuanyuan采纳,获得10
11秒前
寒冷听枫发布了新的文献求助10
11秒前
12秒前
12秒前
orixero应助JimmyY采纳,获得10
13秒前
烟花应助肖浩翔采纳,获得10
13秒前
FashionBoy应助cc采纳,获得10
15秒前
科研小白狗完成签到 ,获得积分10
15秒前
17秒前
17秒前
zhang发布了新的文献求助10
17秒前
小酒迟疑发布了新的文献求助10
18秒前
满意妙梦发布了新的文献求助10
22秒前
小丁完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
24秒前
zhang完成签到,获得积分10
25秒前
洁净路灯发布了新的文献求助10
25秒前
111关注了科研通微信公众号
25秒前
刘雨森完成签到 ,获得积分10
25秒前
26秒前
27秒前
347u完成签到 ,获得积分10
27秒前
英俊的铭应助JimmyY采纳,获得10
29秒前
DRRIGHT发布了新的文献求助10
29秒前
大龙哥886应助科研通管家采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
大龙哥886应助科研通管家采纳,获得10
30秒前
BowieHuang应助科研通管家采纳,获得10
30秒前
BowieHuang应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599588
求助须知:如何正确求助?哪些是违规求助? 4685339
关于积分的说明 14838367
捐赠科研通 4669426
什么是DOI,文献DOI怎么找? 2538128
邀请新用户注册赠送积分活动 1505495
关于科研通互助平台的介绍 1470868