Aspect-based Sentiment Analysis with Ontology-assisted Recommender System on Multilingual Data using Optimised Self-attention and Adaptive Deep Learning Network

计算机科学 情绪分析 人工智能 自然语言处理 推荐系统 判决 背景(考古学) 本体论 深度学习 机器学习 情报检索 生物 认识论 哲学 古生物学
作者
Archana Nagelli,B. Saleena
出处
期刊:Journal of Information & Knowledge Management [World Scientific]
标识
DOI:10.1142/s0219649225500224
摘要

In recent times of application, the Natural Language Processing (NLP) and Aspect-Based Sentiment Analysis (ABSA) seek to forecast the sentiment of polarity in several components of a document or sentence. Much present research concentrates on the relationship between aspect local context and sentiment polarity. There wasn’t enough focus on the significant deep relationships between the aspect sentiment and global context polarity. Some scholars have concluded that supervised algorithms provide promising results for ABSA. However, individually labelling information to train unsupervised systems in various domains and languages is time-consuming and expensive. Therefore, for multilingual reviews, a new ABSA model with ontology for recommendations is developed in this study. The text reviews are initially gathered from traditional online sources and then preprocessed to improve text data quality. For instance, the preprocessed data is subjected to the aspect extraction process. Then, these extracted aspects are given to the self-attention and adaptive model named SATANet for ABSA, where the guided transformer network with Dilated Deep Convolutional Network (DDCN) is used to classify the sentiments. In this SATANet, the network variables are optimised with the help of the suggested Random Position of Bonobo and Reptile Search Algorithm (RP-BRSA) to improve the recommendation performance. The final recommendation is implemented using ontology-based models, and the experimental results are validated through various heuristic algorithms and previous sentiment analysis models by considering various performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路雨寒应助111采纳,获得20
1秒前
健壮熊猫发布了新的文献求助10
2秒前
mm发布了新的文献求助10
2秒前
psycho完成签到,获得积分10
2秒前
可爱的函函应助悲伤牛蛙采纳,获得10
2秒前
Orange应助hui采纳,获得10
2秒前
sakiecon完成签到,获得积分10
3秒前
yu风应助科研通管家采纳,获得10
3秒前
xlx应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
xlx应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得30
3秒前
共享精神应助科研通管家采纳,获得30
3秒前
3秒前
xlx应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
xlx应助科研通管家采纳,获得10
3秒前
香蕉诗蕊应助科研通管家采纳,获得10
3秒前
xlx应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
xlx应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
yznfly给123的求助进行了留言
10秒前
shl完成签到,获得积分10
10秒前
10秒前
在水一方应助mm采纳,获得10
11秒前
fly完成签到,获得积分10
12秒前
kxy0311完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
17秒前
健壮熊猫完成签到,获得积分20
18秒前
zhangliangliang完成签到,获得积分10
19秒前
吉以寒完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851