A retrospective study using machine learning to develop predictive model to identify rotavirus-associated acute gastroenteritis in children

人工智能 机器学习 随机森林 支持向量机 朴素贝叶斯分类器 特征选择 逻辑回归 轮状病毒 决策树 医学 精确性和召回率 接收机工作特性 特征(语言学) 腹泻 计算机科学 内科学 语言学 哲学
作者
Sourav Paul,Minhazur Rahman,Anutee Dolley,Kasturi Saikia,Chongtham Shyamsunder Singh,Arifullah Mohammed,Ghazala Muteeb,Rosy Sarmah,Nima D. Namsa
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:13: e19025-e19025
标识
DOI:10.7717/peerj.19025
摘要

Background Rotavirus is the leading cause of severe dehydrating diarrhea in children under 5 years worldwide. Timely diagnosis is critical, but access to confirmatory testing is limited in hospital settings. Machine learning (ML) models have shown promising potential in supporting symptom-based diagnosis of several diseases in resource-limited settings. Objectives This study aims to develop a machine-learning predictive model integrated with multiple sources of clinical parameters specific to rotavirus infection without relying on laboratory tests. Methods A clinical dataset of 509 children was collected in collaboration with the Regional Institute of Medical Sciences, Imphal, India. The clinical symptoms included diarrhea and its duration, number of stool episodes per day, fever, vomiting and its duration, number of vomiting episodes per day, temperature and dehydration. Correlation analysis is performed to check the feature-feature and feature-outcome collinearity. Feature selection using ANOVA F test is carried out to find the feature importance values and finally obtain the reduced feature subset. Seven supervised learning models were tested and compared viz., support vector machine (SVM), K-nearest neighbor (KNN), naive Bayes (NB), logistic regression (Log_R) , random forest (RF), decision tree (DT), and XGBoost (XGB). A comparison of the performances of the seven models using the classification results obtained. The performance of the models was evaluated based on accuracy, precision, recall, specificity, F1 score, macro F1, F2, and receiver operator characteristic curve. Results The seven ML models were exhaustively experimented on our dataset and compared based on eight evaluation scores which are accuracy, precision, recall, specificity, F1 score, F2 score, macro F1 score, and AUC values computed. We observed that when the seven ML models were applied, RF performed the best with an accuracy of 81.4%, F1 score of 86.9%, macro F1-score of 77.3%, F2 score of 86.5% and area under the curve (AUC) of 89%. Conclusions The machine learning models can contribute to predicting symptom-based diagnosis of rotavirus-associated acute gastroenteritis in children, especially in resource-limited settings. Further validation of the models using a large dataset is needed for predicting pediatric diarrheic populations with optimum sensitivity and specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兰彻发布了新的文献求助10
刚刚
阿巴阿巴发布了新的文献求助10
刚刚
852应助太阳雨采纳,获得10
1秒前
稳重母鸡发布了新的文献求助10
3秒前
4秒前
5秒前
llchen完成签到,获得积分0
6秒前
Mxy发布了新的文献求助10
6秒前
7秒前
9秒前
wjs0406发布了新的文献求助10
9秒前
11秒前
清爽达完成签到 ,获得积分10
12秒前
123发布了新的文献求助10
12秒前
桐桐应助遍地捡糖不要钱采纳,获得10
15秒前
17秒前
stargazor发布了新的文献求助10
18秒前
99668完成签到,获得积分10
19秒前
独孤一草完成签到,获得积分10
20秒前
兰彻完成签到,获得积分10
20秒前
勤恳的烤鸡完成签到,获得积分10
22秒前
田様应助舒适的雁风采纳,获得10
22秒前
22秒前
jewie完成签到 ,获得积分10
22秒前
博慧完成签到 ,获得积分10
23秒前
ls完成签到,获得积分10
24秒前
zhentg完成签到,获得积分0
24秒前
25秒前
胜天半子完成签到,获得积分10
26秒前
冷静的胜完成签到,获得积分10
26秒前
wanghui发布了新的文献求助10
27秒前
28秒前
爆米花应助晓倩采纳,获得10
29秒前
派大星完成签到,获得积分10
31秒前
31秒前
31秒前
伶俐的雁蓉完成签到,获得积分10
32秒前
Qin发布了新的文献求助10
34秒前
35秒前
luca发布了新的文献求助50
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3764549
求助须知:如何正确求助?哪些是违规求助? 3309359
关于积分的说明 10148591
捐赠科研通 3024385
什么是DOI,文献DOI怎么找? 1660047
邀请新用户注册赠送积分活动 793103
科研通“疑难数据库(出版商)”最低求助积分说明 755359