TFcomb identifies transcription factor combinations for cellular reprogramming based on single-cell multiomics data

重编程 生物 计算生物学 转录因子 诱导多能干细胞 基因调控网络 计算机科学 胚胎干细胞 细胞 遗传学 基因 基因表达
作者
Chen Li,Sijie Chen,Yixin Chen,Haiyang Bian,Minsheng Hao,Lei Wei,Xuegong Zhang
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:: gr.279955.124-gr.279955.124
标识
DOI:10.1101/gr.279955.124
摘要

Reprogramming cell state transitions provides the potential for cell engineering and regenerative therapy for many diseases. Finding the reprogramming transcription factors (TFs) and their combinations that can direct the desired state transition is crucial for the task. Computational methods have been developed to identify such reprogramming TFs. However, most of them can only generate a ranked list of individual TFs and ignore the identification of TF combinations. Even for individual reprogramming TF identification, current methods often fail to put the real effective reprogramming TFs at the top of their rankings. To address these challenges, we developed TFcomb, a computational method that leverages single-cell multiomics data to identify reprogramming TFs and TF combinations that can direct cell state transitions. We modeled the task of finding reprogramming TFs and their combinations as an inverse problem to enable searching for answers in very high dimensional space, and used Tikhonov regularization to guarantee the generalization ability of solutions. For the coefficient matrix of the model, we designed a graph attention network to augment gene regulatory networks built with single-cell RNA-seq and ATAC-seq data. Benchmarking experiments on data of human embryonic stem cells demonstrated superior performance of TFcomb against existing methods for identifying individual TFs. We curated datasets of multiple cell reprogramming cases and demonstrated that TFcomb can efficiently identify reprogramming TF combinations from a vast pool of potential combinations. We applied TFcomb on a dataset of mouse hair follicle development and found key TFs in cell differentiation. All experiments showed that TFcomb is powerful in identifying reprogramming TFs and TF combinations from single-cell datasets to empower future cell engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pec完成签到,获得积分10
刚刚
fane发布了新的文献求助30
刚刚
彭于彦祖应助标致的紫翠采纳,获得20
1秒前
枫叶荻花完成签到 ,获得积分10
1秒前
1秒前
David完成签到 ,获得积分10
2秒前
腼腆的以蕊完成签到,获得积分10
2秒前
2秒前
妮妮完成签到,获得积分10
2秒前
轻松尔蝶完成签到 ,获得积分10
3秒前
泡泡老爷车完成签到,获得积分10
3秒前
3秒前
de完成签到,获得积分10
3秒前
英俊凡波发布了新的文献求助10
3秒前
3秒前
3秒前
biang完成签到,获得积分10
3秒前
小桂园完成签到,获得积分10
3秒前
小卫完成签到,获得积分10
4秒前
wwt完成签到,获得积分20
4秒前
5秒前
zj完成签到 ,获得积分10
5秒前
5秒前
5秒前
泶1完成签到,获得积分10
5秒前
lmy发布了新的文献求助10
6秒前
nanishard完成签到,获得积分10
6秒前
ljr发布了新的文献求助20
7秒前
asjm完成签到 ,获得积分10
7秒前
叶123456789发布了新的文献求助10
7秒前
7秒前
JL完成签到,获得积分10
7秒前
华仔应助zhu采纳,获得10
8秒前
NANA发布了新的文献求助30
8秒前
lllllq发布了新的文献求助10
9秒前
英姑应助小野采纳,获得10
9秒前
酷炫迎波完成签到,获得积分10
10秒前
witting发布了新的文献求助10
10秒前
流雨发布了新的文献求助10
10秒前
10秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Dynamics in Chinese Digital Commons: Law, Technology, and Governance 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725848
求助须知:如何正确求助?哪些是违规求助? 3270880
关于积分的说明 9969512
捐赠科研通 2986307
什么是DOI,文献DOI怎么找? 1638161
邀请新用户注册赠送积分活动 777987
科研通“疑难数据库(出版商)”最低求助积分说明 747365