Development and validation of a depression risk prediction model for rural elderly living alone

萧条(经济学) 心理学 精神科 老年学 临床心理学 医学 经济 宏观经济学
作者
Shasha Gao,Huijun Zhang
出处
期刊:BMC Psychiatry [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12888-025-06785-5
摘要

Depression is a prevalent psychological issue among rural elderly individuals living alone, severely impacting their physical and mental health. To develop and validate a depression risk prediction model for rural elderly living alone based on the health ecological model, providing a scientific basis for early intervention. Using data from the 2011 China Health and Retirement Longitudinal Study (CHARLS), we included 1,221 participants. Thedataset was randomly stratified into a training set (70%) and a validation set (30%). Predictors were screened via univariate analysis, followed by multivariate logistic regression to construct the nomogram model. Statistical analysis was performed using R Studio 4.4.1.Ten-fold cross-validation was used to assess the model's stability. Model performance was evaluated using the Receiver Operating Characteristic (ROC) curve, with the Area Under the Curve (AUC) calculated, along with calibration plots, the Hosmer-Lemeshow test, and Decision Curve Analysis (DCA). Self-rated health, pain, frailty, nighttime sleep duration, poor sleep quality, life satisfaction, and visit frequency were identified as independent predictors of depressive symptoms. The model demonstrated excellent discrimination (AUC = 0.85 [95% CI: 0.83-0.88] in the training set and 0.83 [95% CI: 0.78-0.87] in validation), good calibration (Hosmer-Lemeshow test p = 0.47), and high clinical utility (net benefit > 10% in DCA). The nomogram provides a reliable and intuitive tool for early screening of depressive symptoms in rural elderly individuals living alone, supporting targeted interventions. Not applicable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小民工应助dmoney采纳,获得10
刚刚
1秒前
1秒前
2秒前
3秒前
Orange应助啊嘞嘞采纳,获得10
3秒前
Owen应助zyy采纳,获得10
4秒前
panisa鹅发布了新的文献求助10
4秒前
CipherSage应助wuhu采纳,获得10
6秒前
英俊的铭应助显隐采纳,获得10
6秒前
Lucas应助等待天奇采纳,获得10
6秒前
沐沐发布了新的文献求助10
6秒前
坚强的忻发布了新的文献求助10
6秒前
yuan发布了新的文献求助20
8秒前
欢喜夏兰完成签到,获得积分20
8秒前
苏苏阿苏完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
11秒前
科研通AI5应助LEO采纳,获得10
12秒前
hhh完成签到,获得积分10
12秒前
大花卷完成签到,获得积分10
12秒前
开放的黑猫完成签到,获得积分10
13秒前
刘阿呆发布了新的文献求助10
14秒前
超人不会飞完成签到,获得积分20
14秒前
那姆发布了新的文献求助10
15秒前
左丘傲菡发布了新的文献求助10
15秒前
英俊的铭应助momo采纳,获得10
16秒前
16秒前
可爱多完成签到,获得积分10
17秒前
隐形曼青应助mrz采纳,获得10
17秒前
17秒前
ong发布了新的文献求助10
18秒前
secret完成签到 ,获得积分10
19秒前
19秒前
NW18完成签到,获得积分10
19秒前
19秒前
端庄的以柳完成签到,获得积分10
19秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755838
求助须知:如何正确求助?哪些是违规求助? 3299129
关于积分的说明 10108745
捐赠科研通 3013773
什么是DOI,文献DOI怎么找? 1655242
邀请新用户注册赠送积分活动 789660
科研通“疑难数据库(出版商)”最低求助积分说明 753345