亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the Real-time Classification of Disease Severity in Ulcerative Colitis: Artificial Intelligence as the Trigger for a Second Opinion

医学 溃疡性结肠炎 剪辑 炎症性肠病 人工智能 卷积神经网络 结肠镜检查 疾病 考试(生物学) 机器学习 内科学 结直肠癌 外科 计算机科学 癌症 古生物学 生物
作者
Bobby Lo,Björn Möller,Christian Igel,Signe Wildt,Ida Vind,Flemming Bendtsen,Johan Burisch,Bulat Ibragimov
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
标识
DOI:10.14309/ajg.0000000000003382
摘要

Objective: Endoscopic classification of ulcerative colitis (UC) shows high interobserver variation. Previous research demonstrated that artificial intelligence (AI) can match the accuracy of central reading in scoring still images. We now extend this assessment to longer colon segments and integrate AI into clinical workflows, evaluating its use for real-time, video-based classification of disease severity, and as a support system for physicians. Methods: We trained a convolutional neural network with the Mayo Endoscopic Subscores (MES) of 2,561 images and 53 videos from 645 patients. The model differentiated scoreable from unscoreable endoscopy sections through open-set recognition. Validation involved 140 video clips from 44 UC patients. Six inflammatory bowel disease (IBD) experts and 16 non-experts rated these videos, with expert scores as the gold standard. We assessed the model’s performance and the value as a supporting system. Lastly, the model underwent an alpha test on a real-world patient as a real-time endoscopic support. Results: The model achieved an accuracy of 82%, with no significant differences between the experts and the AI. When used as a supporting system, it improved non-IBD experts' performance by 12% and disagreed with the primary physician in 20-39% of cases. During the alpha test, it was successfully integrated into clinical practice, accurately distinguishing between MES 0 and MES 1, consistent with endoscopists' assessments. Conclusions: Our innovative AI model shows significant potential for enhancing the accuracy of UC severity classification and improving the proficiency of non-IBD experts. It is designed for clinical use and has proven feasible in real-world testing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助xxxxx采纳,获得10
8秒前
10秒前
乐乐完成签到,获得积分10
12秒前
13秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
大模型应助科研通管家采纳,获得10
19秒前
33秒前
汤汤完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
丰知然应助野性的柠檬采纳,获得10
3分钟前
野性的柠檬完成签到,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
哈哈和发布了新的文献求助10
5分钟前
李爱国应助哈哈和采纳,获得10
5分钟前
5分钟前
金顺完成签到,获得积分10
5分钟前
5分钟前
所所应助mixieer采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
顺心剑身完成签到 ,获得积分10
6分钟前
6分钟前
CodeCraft应助科研通管家采纳,获得10
6分钟前
6分钟前
mixieer发布了新的文献求助10
6分钟前
7分钟前
褚幻香完成签到 ,获得积分10
7分钟前
simitundeins应助褚幻香采纳,获得30
7分钟前
nnnnnn发布了新的文献求助10
7分钟前
simitundeins给mulidexin2021的求助进行了留言
7分钟前
sutharsons应助mmyhn采纳,获得10
7分钟前
8分钟前
Kapur发布了新的文献求助20
8分钟前
8分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510690
求助须知:如何正确求助?哪些是违规求助? 3093520
关于积分的说明 9217351
捐赠科研通 2787780
什么是DOI,文献DOI怎么找? 1529885
邀请新用户注册赠送积分活动 710613
科研通“疑难数据库(出版商)”最低求助积分说明 706251