Brain Age Prediction Based on Quantitative Susceptibility Mapping Using the Segmentation Transformer

定量磁化率图 分割 计算机科学 人工智能 模式识别(心理学) 磁共振成像 医学 放射科
作者
Mingxing Chen,Yiqing Wang,Yuting Shi,Jie Feng,Ruimin Feng,Xiaojun Guan,Xiaojun Xu,Yuyao Zhang,Cheng Jin,Hongjiang Wei
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 1012-1021 被引量:5
标识
DOI:10.1109/jbhi.2023.3341629
摘要

The process of brain aging is intricate, encompassing significant structural and functional changes, including myelination and iron deposition in the brain. Brain age could act as a quantitative marker to evaluate the degree of the individual's brain evolution. Quantitative susceptibility mapping (QSM) is sensitive to variations in magnetically responsive substances such as iron and myelin, making it a favorable tool for estimating brain age. In this study, we introduce an innovative 3D convolutional network named Segmentation-Transformer-Age-Network (STAN) to predict brain age based on QSM data. STAN employs a two-stage network architecture. The first-stage network learns to extract informative features from the QSM data through segmentation training, while the second-stage network predicts brain age by integrating the global and local features. We collected QSM images from 712 healthy participants, with 548 for training and 164 for testing. The results demonstrate that the proposed method achieved a high accuracy brain age prediction with a mean absolute error (MAE) of 4.124 years and a coefficient of determination (R 2 ) of 0.933. Furthermore, the gaps between the predicted brain age and the chronological age of Parkinson's disease patients were significantly higher than those of healthy subjects (P<0.01). We thus believe that using QSM-based predicted brain age offers a more reliable and accurate phenotype, with the potentiality to serve as a biomarker to explore the process of advanced brain aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助追寻十八采纳,获得10
1秒前
羔羊完成签到,获得积分10
4秒前
59完成签到 ,获得积分10
5秒前
xxmlxj完成签到,获得积分10
6秒前
香蕉觅云应助二虎采纳,获得10
6秒前
大个应助粗犷的青枫采纳,获得10
6秒前
复杂的凌瑶完成签到,获得积分20
7秒前
wzt完成签到,获得积分10
8秒前
丫丫发布了新的文献求助10
9秒前
Rainbow完成签到,获得积分10
9秒前
9秒前
sun完成签到,获得积分10
9秒前
共享精神应助123采纳,获得10
10秒前
MintCoffeeCat完成签到,获得积分10
11秒前
缓慢如南应助皮皮最可爱采纳,获得10
11秒前
wang完成签到,获得积分10
12秒前
CodeCraft应助Simon采纳,获得10
12秒前
自由的姿完成签到,获得积分10
13秒前
汉堡包应助cmcm采纳,获得10
13秒前
14秒前
自由的姿发布了新的文献求助10
16秒前
pfguo给pfguo的求助进行了留言
16秒前
粗犷的青枫完成签到,获得积分10
16秒前
Hello应助nini采纳,获得10
17秒前
hihihi完成签到 ,获得积分10
17秒前
18秒前
大个应助Rainbow采纳,获得10
19秒前
19秒前
20秒前
20秒前
12完成签到,获得积分10
21秒前
XY完成签到,获得积分10
21秒前
21秒前
23秒前
落寞臻发布了新的文献求助10
23秒前
wannna发布了新的文献求助10
24秒前
烧椒茄子完成签到 ,获得积分10
24秒前
周老八发布了新的文献求助10
24秒前
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552161
求助须知:如何正确求助?哪些是违规求助? 3128470
关于积分的说明 9378076
捐赠科研通 2827552
什么是DOI,文献DOI怎么找? 1554473
邀请新用户注册赠送积分活动 725481
科研通“疑难数据库(出版商)”最低求助积分说明 714915