The process of brain aging is intricate, encompassing significant structural and functional changes, including myelination and iron deposition in the brain. Brain age could act as a quantitative marker to evaluate the degree of the individual's brain evolution. Quantitative susceptibility mapping (QSM) is sensitive to variations in magnetically responsive substances such as iron and myelin, making it a favorable tool for estimating brain age. In this study, we introduce an innovative 3D convolutional network named Segmentation-Transformer-Age-Network (STAN) to predict brain age based on QSM data. STAN employs a two-stage network architecture. The first-stage network learns to extract informative features from the QSM data through segmentation training, while the second-stage network predicts brain age by integrating the global and local features. We collected QSM images from 712 healthy participants, with 548 for training and 164 for testing. The results demonstrate that the proposed method achieved a high accuracy brain age prediction with a mean absolute error (MAE) of 4.124 years and a coefficient of determination (R 2 ) of 0.933. Furthermore, the gaps between the predicted brain age and the chronological age of Parkinson's disease patients were significantly higher than those of healthy subjects (P<0.01). We thus believe that using QSM-based predicted brain age offers a more reliable and accurate phenotype, with the potentiality to serve as a biomarker to explore the process of advanced brain aging.