Wings and whiffs: Understanding the role of aerodynamics in odor-guided flapping flight

拍打 空气动力学 物理 气味 机械 雷诺数 航空航天工程 昆虫飞行 湍流 声学 工程类 生物 热力学 神经科学
作者
Menglong Lei,Chengyu Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12)
标识
DOI:10.1063/5.0174377
摘要

Odor-guided navigation is an indispensable aspect of flying insects' behavior, facilitating crucial activities such as foraging and mating. The interaction between aerodynamics and olfaction plays a pivotal role in the odor-guided flight behaviors of insects, yet the interplay of these two functions remains incompletely understood. In this study, we developed a fully coupled three-way numerical solver, which solves the three-dimensional Navier–Stokes equations coupled with equations of motion for the passive flapping wings, and the odorant advection–diffusion equation. This numerical solver is applied to investigate the unsteady flow field and the odorant transport phenomena of a fruit fly model in odor-guided upwind surge flight over a broad spectrum of reduced frequencies (0.325–1.3) and Reynolds numbers (90–360). Our results uncover a complex dependency between flight velocity and odor plume perception, modulated by the reduced frequency of flapping flight. At low reduced frequencies, the flapping wings disrupt the odor plume, creating a saddle point of air flow near the insect's thorax. Conversely, at high reduced frequencies, the wing-induced flow generates a stagnation point, in addition to the saddle point, that alters the aerodynamic environment around the insect's antennae, thereby reducing odor sensitivity but increasing the sampling range. Moreover, an increase in Reynolds number was found to significantly enhance odor sensitivity due to the synergistic effects of greater odor diffusivity and stronger wing-induced flow. These insights hold considerable implications for the design of bio-inspired, odor-guided micro air vehicles in applications like surveillance and detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yoooo完成签到 ,获得积分10
刚刚
简一发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
BowieHuang应助Leemj666采纳,获得10
1秒前
WonderHow完成签到,获得积分10
1秒前
ll发布了新的文献求助10
1秒前
AixGnad完成签到,获得积分10
1秒前
childe发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
Serena完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
hfhkjh发布了新的文献求助30
6秒前
6秒前
梦幻征途发布了新的文献求助10
6秒前
斯文的八宝粥完成签到 ,获得积分10
7秒前
小二郎应助威武的戎采纳,获得10
7秒前
不过尔尔发布了新的文献求助10
9秒前
沧海一声笑完成签到,获得积分10
10秒前
11秒前
wuxian发布了新的文献求助10
13秒前
14秒前
Zoye完成签到,获得积分10
15秒前
15秒前
15秒前
爆米花应助自然的含蕾采纳,获得10
15秒前
烟花应助cc采纳,获得10
16秒前
威武的戎发布了新的文献求助10
19秒前
19秒前
orixero应助斯人采纳,获得10
19秒前
KAJIKU发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
烟花应助菲菲宋采纳,获得10
20秒前
诺贝尔候选人完成签到 ,获得积分10
21秒前
万能图书馆应助wu采纳,获得10
21秒前
九九完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713351
求助须知:如何正确求助?哪些是违规求助? 5214914
关于积分的说明 15270516
捐赠科研通 4865125
什么是DOI,文献DOI怎么找? 2611873
邀请新用户注册赠送积分活动 1562074
关于科研通互助平台的介绍 1519318