Wings and whiffs: Understanding the role of aerodynamics in odor-guided flapping flight

拍打 空气动力学 物理 气味 机械 雷诺数 航空航天工程 昆虫飞行 湍流 声学 工程类 生物 热力学 神经科学
作者
Menglong Lei,Chengyu Li
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12)
标识
DOI:10.1063/5.0174377
摘要

Odor-guided navigation is an indispensable aspect of flying insects' behavior, facilitating crucial activities such as foraging and mating. The interaction between aerodynamics and olfaction plays a pivotal role in the odor-guided flight behaviors of insects, yet the interplay of these two functions remains incompletely understood. In this study, we developed a fully coupled three-way numerical solver, which solves the three-dimensional Navier–Stokes equations coupled with equations of motion for the passive flapping wings, and the odorant advection–diffusion equation. This numerical solver is applied to investigate the unsteady flow field and the odorant transport phenomena of a fruit fly model in odor-guided upwind surge flight over a broad spectrum of reduced frequencies (0.325–1.3) and Reynolds numbers (90–360). Our results uncover a complex dependency between flight velocity and odor plume perception, modulated by the reduced frequency of flapping flight. At low reduced frequencies, the flapping wings disrupt the odor plume, creating a saddle point of air flow near the insect's thorax. Conversely, at high reduced frequencies, the wing-induced flow generates a stagnation point, in addition to the saddle point, that alters the aerodynamic environment around the insect's antennae, thereby reducing odor sensitivity but increasing the sampling range. Moreover, an increase in Reynolds number was found to significantly enhance odor sensitivity due to the synergistic effects of greater odor diffusivity and stronger wing-induced flow. These insights hold considerable implications for the design of bio-inspired, odor-guided micro air vehicles in applications like surveillance and detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
刚刚
1秒前
2秒前
CipherSage应助乐观冰香采纳,获得10
2秒前
赘婿应助山芋山芋采纳,获得10
3秒前
3秒前
明理凝荷完成签到 ,获得积分10
5秒前
abandon发布了新的文献求助10
5秒前
在水一方应助英俊芷采纳,获得10
5秒前
完美世界应助santiago采纳,获得10
6秒前
6秒前
郑雷完成签到,获得积分10
6秒前
牟聪明发布了新的文献求助10
6秒前
6秒前
Eleanor发布了新的文献求助10
6秒前
田様应助胡帅采纳,获得10
7秒前
8秒前
下雨天发布了新的文献求助10
11秒前
12秒前
12秒前
HYY完成签到,获得积分10
12秒前
12秒前
13秒前
诚心寄松发布了新的文献求助20
13秒前
Akim应助阮相贵采纳,获得10
14秒前
思源应助Villaindied采纳,获得10
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
英吉利25发布了新的文献求助10
17秒前
OrthoDW发布了新的文献求助10
18秒前
19秒前
东白湖的无奈完成签到,获得积分10
20秒前
等你来发布了新的文献求助50
20秒前
胡帅发布了新的文献求助10
21秒前
牟聪明完成签到,获得积分10
21秒前
21秒前
wwww威完成签到,获得积分10
22秒前
隐形曼青应助沉默的惜芹采纳,获得10
23秒前
Wendy发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684969
求助须知:如何正确求助?哪些是违规求助? 5039665
关于积分的说明 15185713
捐赠科研通 4844070
什么是DOI,文献DOI怎么找? 2597083
邀请新用户注册赠送积分活动 1549686
关于科研通互助平台的介绍 1508151