ST-SCGNN: A Spatio-Temporal Self-Constructing Graph Neural Network for Cross-Subject EEG-Based Emotion Recognition and Consciousness Detection

计算机科学 脑电图 模式识别(心理学) 人工智能 人工神经网络 情绪识别 意识 图形 特征提取 杠杆(统计) 语音识别 心理学 神经科学 理论计算机科学
作者
Jiahui Pan,Rongming Liang,Zhipeng He,Jingcong Li,Yan Liang,Xinjie Zhou,Yanbin He,Yuanqing Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 777-788 被引量:21
标识
DOI:10.1109/jbhi.2023.3335854
摘要

In this paper, a novel spatio-temporal self-constructing graph neural network (ST-SCGNN) is proposed for cross-subject emotion recognition and consciousness detection. For spatio-temporal feature generation, activation and connection pattern features are first extracted and then combined to leverage their complementary emotion-related information. Next, a self-constructing graph neural network with a spatio-temporal model is presented. Specifically, the graph structure of the neural network is dynamically updated by the self-constructing module of the input signal. Experiments based on the SEED and SEED-IV datasets showed that the model achieved average accuracies of 85.90% and 76.37%, respectively. Both values exceed the state-of-the-art metrics with the same protocol. In clinical besides, patients with disorders of consciousness (DOC) suffer severe brain injuries, and sufficient training data for EEG-based emotion recognition cannot be collected. Our proposed ST-SCGNN method for cross-subject emotion recognition was first attempted in training in ten healthy subjects and testing in eight patients with DOC. We found that two patients obtained accuracies significantly higher than chance level and showed similar neural patterns with healthy subjects. Covert consciousness and emotion-related abilities were thus demonstrated in these two patients. Our proposed ST-SCGNN for cross-subject emotion recognition could be a promising tool for consciousness detection in DOC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快去看文献关注了科研通微信公众号
1秒前
2秒前
4秒前
4秒前
阿斌发布了新的文献求助10
5秒前
5秒前
5秒前
剧院的饭桶完成签到,获得积分10
5秒前
shihui发布了新的文献求助10
5秒前
柚子发布了新的文献求助10
7秒前
ZCY完成签到,获得积分10
7秒前
锂炸发布了新的文献求助10
7秒前
黑暗系发布了新的文献求助10
7秒前
7秒前
7秒前
Mia完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
神勇的豁完成签到,获得积分10
8秒前
赘婿应助ZHIXIANGWENG采纳,获得10
8秒前
shinhung发布了新的文献求助10
8秒前
所所应助ZHIXIANGWENG采纳,获得10
9秒前
小蘑菇应助ZHIXIANGWENG采纳,获得10
9秒前
Jasper应助ZHIXIANGWENG采纳,获得10
9秒前
Hello应助ZHIXIANGWENG采纳,获得10
9秒前
852应助ZHIXIANGWENG采纳,获得10
9秒前
yae应助ZHIXIANGWENG采纳,获得10
9秒前
打打应助ZHIXIANGWENG采纳,获得10
9秒前
斯文败类应助ZHIXIANGWENG采纳,获得10
9秒前
uzumay发布了新的文献求助30
9秒前
谷粱发布了新的文献求助10
10秒前
酷酷的蚂蚁完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
好好发布了新的文献求助10
11秒前
ycy完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126