Multiple Hand Posture Rehabilitation System Using Vision-Based Intention Detection and Soft-Robotic Glove

有线手套 康复 任务(项目管理) 人工智能 日常生活活动 计算机科学 物理医学与康复 软机器人 人机交互 计算机视觉 机器人 模拟 工程类 物理疗法 医学 虚拟现实 系统工程
作者
Eojin Rho,Lee Ho-Chang,Yechan Lee,Kun-Do Lee,Jungwook Mun,Min Kim,Daekyum Kim,Hyung‐Soon Park,Sungho Jo
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 6499-6509 被引量:2
标识
DOI:10.1109/tii.2023.3348826
摘要

For stroke survivors, diminished hand functions limit their ability to perform activities of daily living (ADLs). Recently, soft-robotic gloves have assisted stroke survivors in active rehabilitation by facilitating their finger movements based on intentions expressed through biosignals, such as electromyogram and electroencephalogram. In this regard, helping stroke survivors actively train multiple hand postures can improve hand functions required for ADLs. However, detecting intentions regarding multiple hand postures remains challenging, often resulting in low online classification performance. To address this, we propose a hand rehabilitation system comprising a vision-based intention detection framework and 8-degree-of-freedom soft-robotic glove. Our proposed framework, depth enhanced hand posture intention network, analyzes images and depths data observing users' arm behavior and hand-object interactions to predict intentions for multiple hand postures. The 8-degrees-of-freedom soft-robotic glove facilitates flexion and extension of individual fingers to help users perform desired hand postures. To support active rehabilitation, we operate our glove to facilitate user's finger movements when the user exerts effort to generate desired hand postures. We test our system on a real-time pick and place task involving five hand postures most commonly utilized in ADLs. Our vision-based system could predict and facilitate the desired hand postures for five healthy individuals and three stroke survivors with average accuracy of 90.4 ± 3.6% and 80.3 ± 4.6%, respectively, outperforming methods reported in previous studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luchong完成签到,获得积分10
刚刚
hylqj123发布了新的文献求助20
刚刚
cc完成签到 ,获得积分10
1秒前
zjl关闭了zjl文献求助
1秒前
1秒前
123发布了新的文献求助10
1秒前
francesliu完成签到,获得积分10
2秒前
yyhgyg完成签到,获得积分10
2秒前
yy发布了新的文献求助10
2秒前
聪慧翠风发布了新的文献求助10
2秒前
桐桐应助小胡采纳,获得10
3秒前
ajia应助专注白昼采纳,获得10
3秒前
LJJ完成签到,获得积分10
3秒前
tutu完成签到,获得积分20
3秒前
聪111应助淡淡的南风采纳,获得100
3秒前
3秒前
Mic应助天真千易采纳,获得10
3秒前
浮游应助天真千易采纳,获得10
3秒前
Li发布了新的文献求助10
3秒前
Mic应助天真千易采纳,获得30
3秒前
yy完成签到,获得积分10
3秒前
asdf应助天真千易采纳,获得10
3秒前
pluto应助天真千易采纳,获得10
3秒前
浮游应助天真千易采纳,获得10
4秒前
pluto应助天真千易采纳,获得10
4秒前
4秒前
浮游应助天真千易采纳,获得10
4秒前
Harry应助天真千易采纳,获得10
4秒前
浮游应助天真千易采纳,获得10
4秒前
好久不见发布了新的文献求助10
4秒前
4秒前
4秒前
慕青应助les3采纳,获得20
5秒前
5秒前
大个应助可耐的不平采纳,获得10
5秒前
恺恺qaq发布了新的文献求助200
5秒前
上官若男应助可耐的不平采纳,获得10
5秒前
JamesPei应助羊羊毛卷儿采纳,获得10
5秒前
共享精神应助可耐的不平采纳,获得10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978