Multiple Hand Posture Rehabilitation System Using Vision-Based Intention Detection and Soft-Robotic Glove

有线手套 康复 任务(项目管理) 人工智能 日常生活活动 计算机科学 物理医学与康复 软机器人 人机交互 计算机视觉 机器人 模拟 工程类 物理疗法 医学 虚拟现实 系统工程
作者
Eojin Rho,Lee Ho-Chang,Yechan Lee,Kun-Do Lee,Jungwook Mun,Min Kim,Daekyum Kim,Hyung‐Soon Park,Sungho Jo
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 6499-6509 被引量:2
标识
DOI:10.1109/tii.2023.3348826
摘要

For stroke survivors, diminished hand functions limit their ability to perform activities of daily living (ADLs). Recently, soft-robotic gloves have assisted stroke survivors in active rehabilitation by facilitating their finger movements based on intentions expressed through biosignals, such as electromyogram and electroencephalogram. In this regard, helping stroke survivors actively train multiple hand postures can improve hand functions required for ADLs. However, detecting intentions regarding multiple hand postures remains challenging, often resulting in low online classification performance. To address this, we propose a hand rehabilitation system comprising a vision-based intention detection framework and 8-degree-of-freedom soft-robotic glove. Our proposed framework, depth enhanced hand posture intention network, analyzes images and depths data observing users' arm behavior and hand-object interactions to predict intentions for multiple hand postures. The 8-degrees-of-freedom soft-robotic glove facilitates flexion and extension of individual fingers to help users perform desired hand postures. To support active rehabilitation, we operate our glove to facilitate user's finger movements when the user exerts effort to generate desired hand postures. We test our system on a real-time pick and place task involving five hand postures most commonly utilized in ADLs. Our vision-based system could predict and facilitate the desired hand postures for five healthy individuals and three stroke survivors with average accuracy of 90.4 ± 3.6% and 80.3 ± 4.6%, respectively, outperforming methods reported in previous studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xia发布了新的文献求助10
刚刚
SCI发布了新的文献求助10
1秒前
1秒前
zhui发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
马静雨完成签到,获得积分20
2秒前
3秒前
3秒前
快乐小白菜应助shenzhou9采纳,获得10
3秒前
无花果应助aertom采纳,获得10
3秒前
小田发布了新的文献求助10
3秒前
sankumao发布了新的文献求助30
3秒前
奋斗的盼柳完成签到 ,获得积分10
4秒前
5秒前
Jasper应助handsomecat采纳,获得10
5秒前
5秒前
李雪完成签到,获得积分10
6秒前
6秒前
sv发布了新的文献求助10
8秒前
小田完成签到,获得积分10
8秒前
茶茶完成签到,获得积分20
8秒前
苏兴龙完成签到,获得积分10
8秒前
坚强的亦云-333完成签到,获得积分10
8秒前
Ava应助dan1029采纳,获得10
9秒前
9秒前
9秒前
奶糖最可爱完成签到,获得积分10
10秒前
10秒前
mojomars发布了新的文献求助10
11秒前
幽壑之潜蛟应助茶茶采纳,获得10
11秒前
12秒前
12秒前
12秒前
迅速海云完成签到,获得积分10
12秒前
sjxx发布了新的文献求助10
12秒前
12秒前
乐乐应助Rachel采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794