Cloud Classification by machine learning for Geostationary Radiation Imager

地球静止轨道 云计算 遥感 计算机科学 云顶 卫星 亮度温度 地球静止运行环境卫星 气象学 环境科学 地质学 电信 物理 微波食品加热 工程类 航空航天工程 操作系统
作者
Bin Guo,Feng Zhang,Wenwen Li,Zhijun Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/tgrs.2024.3353373
摘要

To enhance the accuracy of cloud classification, this study proposes cloud classification models based on machine learning algorithms. The models take as input the observed reflectance or brightness temperature of 12 channels of the Advanced Geostationary Radiation Imager (AGRI) on Fengyun-4A satellite, and multi-channel clear sky brightness temperature. The classification results of the CPR-CALIOP merged product are used as the truth for training and validating the models. These models are developed to reliably detect and classify the clouds during daytime as well as for all-time (including both day and night). The results obtained from the developed models show better accuracies relative to those of the Fengyun 4A Level-2 cloud products in terms of cloud detection and classification. The models provide a feasible method for the detection of multi-layer clouds and classification of clouds at night. The applicability of cloud classification results based on CPR-CALIOP from the perspective of spectral sensitivity is analyzed on AGRI observations, providing valuable prior knowledge for cloud classification methods based on geostationary satellite imagers. The accuracies of single-layer cloud type classification during the day and all-time are 83.4% and 79.4%, respectively. Compared with the ISCCP classification method, the model’s identification of Nimbostratus and the Deep convection clouds (Ni/DC) has better consistency with precipitation observed by GPM satellite, which helps to track and monitor precipitation processes. This study also evaluates the model results using CALIPSO products and ground-based cloud radar, demonstrating that they can obtain accurate and robust results in different time periods and regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Janice完成签到,获得积分10
1秒前
1秒前
吾将上下而求索给岩松的求助进行了留言
1秒前
朴素青寒完成签到,获得积分10
4秒前
哔大校长完成签到,获得积分20
5秒前
ymmmaomao23发布了新的文献求助10
5秒前
lulu完成签到,获得积分10
5秒前
du完成签到 ,获得积分10
6秒前
科研通AI2S应助火星上白晴采纳,获得10
6秒前
昏睡的半鬼完成签到 ,获得积分10
9秒前
xjz240221完成签到 ,获得积分10
9秒前
SilentRP完成签到,获得积分10
10秒前
iNk应助无与伦比采纳,获得20
10秒前
灰太狼大王完成签到 ,获得积分10
10秒前
zimuxinxin完成签到,获得积分10
11秒前
SYSUer完成签到,获得积分10
12秒前
WangShiyu完成签到,获得积分10
12秒前
一目完成签到,获得积分10
13秒前
14秒前
Fashioner8351完成签到,获得积分10
16秒前
不良帅完成签到,获得积分10
16秒前
酷波er应助zimuxinxin采纳,获得10
16秒前
16秒前
Zhong发布了新的文献求助10
16秒前
18秒前
张伟完成签到 ,获得积分10
18秒前
哔大校长发布了新的文献求助10
19秒前
医生科学家完成签到 ,获得积分10
20秒前
Violet完成签到,获得积分10
21秒前
zong240221完成签到 ,获得积分10
22秒前
迷路迎南完成签到 ,获得积分10
23秒前
雅琳完成签到,获得积分10
24秒前
24秒前
haru完成签到,获得积分10
24秒前
科研通AI2S应助zimuxinxin采纳,获得10
25秒前
jbear完成签到 ,获得积分10
27秒前
27秒前
单纯的爆米花完成签到,获得积分10
28秒前
Zhong完成签到,获得积分20
28秒前
29秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388672
求助须知:如何正确求助?哪些是违规求助? 3000899
关于积分的说明 8794245
捐赠科研通 2687128
什么是DOI,文献DOI怎么找? 1472001
科研通“疑难数据库(出版商)”最低求助积分说明 680709
邀请新用户注册赠送积分活动 673329