亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of grapevine varieties using UAV hyperspectral imaging

高光谱成像 葡萄园 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 任务(项目管理) 地理 数据库 工程类 考古 系统工程
作者
Alfonso López,Carlos J. Ogáyar,Francisco R. Feito,Joaquim J. Sousa
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2401.12851
摘要

The classification of different grapevine varieties is a relevant phenotyping task in Precision Viticulture since it enables estimating the growth of vineyard rows dedicated to different varieties, among other applications concerning the wine industry. This task can be performed with destructive methods that require time-consuming tasks, including data collection and analysis in the laboratory. However, Unmanned Aerial Vehicles (UAV) provide a more efficient and less prohibitive approach to collecting hyperspectral data, despite acquiring noisier data. Therefore, the first task is the processing of these data to correct and downsample large amounts of data. In addition, the hyperspectral signatures of grape varieties are very similar. In this work, a Convolutional Neural Network (CNN) is proposed for classifying seventeen varieties of red and white grape variants. Rather than classifying single samples, these are processed together with their neighbourhood. Hence, the extraction of spatial and spectral features is addressed with 1) a spatial attention layer and 2) Inception blocks. The pipeline goes from processing to dataset elaboration, finishing with the training phase. The fitted model is evaluated in terms of response time, accuracy and data separability, and compared with other state-of-the-art CNNs for classifying hyperspectral data. Our network was proven to be much more lightweight with a reduced number of input bands, a lower number of trainable weights and therefore, reduced training time. Despite this, the evaluated metrics showed much better results for our network (~99% overall accuracy), in comparison with previous works barely achieving 81% OA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weihe完成签到 ,获得积分10
4秒前
科研通AI5应助覃仲荣采纳,获得10
5秒前
冰雪痕完成签到 ,获得积分10
6秒前
13秒前
寒雨发布了新的文献求助10
17秒前
阿灵完成签到 ,获得积分10
18秒前
寒冷哈密瓜完成签到 ,获得积分10
19秒前
打打应助覃仲荣采纳,获得10
22秒前
酷波er应助优秀的学习崽采纳,获得10
22秒前
小蘑菇应助寒雨采纳,获得10
23秒前
乌龟gogogo完成签到 ,获得积分10
24秒前
kid1412完成签到 ,获得积分10
38秒前
38秒前
覃仲荣完成签到,获得积分10
40秒前
43秒前
覃仲荣发布了新的文献求助10
44秒前
whyzz完成签到 ,获得积分10
48秒前
橙子完成签到 ,获得积分10
55秒前
zoiaii完成签到 ,获得积分10
1分钟前
酷炫葵阴完成签到,获得积分10
1分钟前
陈一一完成签到 ,获得积分10
1分钟前
龙骑士25完成签到 ,获得积分10
1分钟前
VDC发布了新的文献求助10
1分钟前
小郭爱科研完成签到 ,获得积分10
1分钟前
科目三应助鳗鱼行天采纳,获得30
1分钟前
wszzb完成签到,获得积分10
1分钟前
合一海盗完成签到,获得积分10
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Carlos_Soares完成签到,获得积分10
1分钟前
fawr完成签到 ,获得积分10
1分钟前
乔治韦斯莱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
hhhhh完成签到 ,获得积分10
2分钟前
葛怀锐完成签到 ,获得积分10
2分钟前
想学习发布了新的文献求助20
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671180
求助须知:如何正确求助?哪些是违规求助? 3228098
关于积分的说明 9778330
捐赠科研通 2938347
什么是DOI,文献DOI怎么找? 1609853
邀请新用户注册赠送积分活动 760473
科研通“疑难数据库(出版商)”最低求助积分说明 735976