A Point Cloud Segmentation Method for Dim and Cluttered Underground Tunnel Scenes Based on the Segment Anything Model

点云 分割 计算机科学 计算机视觉 点(几何) 人工智能 钥匙(锁) 计算机图形学(图像) 几何学 计算机安全 数学
作者
Jian Kang,Na Chen,Mei Li,Shanjun Mao,Haoyuan Zhang,Fan Yang,Hui Liu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (1): 97-97 被引量:1
标识
DOI:10.3390/rs16010097
摘要

In recent years, point cloud segmentation technology has increasingly played a pivotal role in tunnel construction and maintenance. Currently, traditional methods for segmenting point clouds in tunnel scenes often rely on a multitude of attribute information, including spatial distribution, color, normal vectors, intensity, and density. However, the underground tunnel scenes show greater complexity than road tunnel scenes, such as dim light, indistinct boundaries of tunnel walls, and disordered pipelines. Furthermore, issues pertaining to data quality, such as the lack of color information and insufficient annotated data, contribute to the subpar performance of conventional point cloud segmentation algorithms. To address this issue, a 3D point cloud segmentation framework specifically for underground tunnels is proposed based on the Segment Anything Model (SAM). This framework effectively leverages the generalization capability of the visual foundation model to automatically adapt to various scenes and perform efficient segmentation of tunnel point clouds. Specifically, the tunnel is first sliced along its direction on the tunnel line. Then, each sliced point cloud is projected onto a two-dimensional plane. Various projection methods and point cloud coloring techniques are employed to enhance SAM’s segmentation performance in images. Finally, the semantic segmentation of the entire underground tunnel is achieved by a small set of manually annotated semantic labels used as prompts in a progressive and recursive manner. The key feature of this method lies in its independence from model training, as it directly and efficiently addresses tunnel point cloud segmentation challenges by capitalizing on the generalization capability of foundation model. Comparative experiments against classical region growing algorithms and PointNet++ deep learning algorithms demonstrate the superior performance of our proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助可耐的毛衣采纳,获得10
刚刚
刚刚
BigKang完成签到,获得积分20
刚刚
May完成签到,获得积分10
1秒前
huifang完成签到,获得积分10
2秒前
dong应助顺心迎梦采纳,获得10
2秒前
斯文败类应助收集快乐采纳,获得10
2秒前
2秒前
yooloo发布了新的文献求助10
2秒前
zz发布了新的文献求助10
3秒前
3秒前
顺利毕业呀完成签到,获得积分10
3秒前
DDKK关注了科研通微信公众号
3秒前
cs发布了新的文献求助10
4秒前
4秒前
BigKang发布了新的文献求助10
4秒前
FashionBoy应助whitezhu采纳,获得30
5秒前
乘风破浪发布了新的文献求助10
5秒前
阿杰完成签到,获得积分10
5秒前
小王发布了新的文献求助10
6秒前
6秒前
张慧仪发布了新的文献求助10
6秒前
vergil完成签到,获得积分10
7秒前
一川烟雨完成签到,获得积分10
7秒前
遇简完成签到,获得积分10
7秒前
8秒前
9秒前
我行我素发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
ark861023发布了新的文献求助10
9秒前
POPO完成签到 ,获得积分10
9秒前
无情的函完成签到,获得积分20
9秒前
10秒前
怡然雁凡完成签到,获得积分10
10秒前
火龙果发布了新的文献求助10
10秒前
泽泽完成签到,获得积分10
10秒前
未来完成签到,获得积分10
10秒前
鲸鲸发布了新的文献求助30
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600