已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Point Cloud Segmentation Method for Dim and Cluttered Underground Tunnel Scenes Based on the Segment Anything Model

点云 分割 计算机科学 计算机视觉 点(几何) 人工智能 钥匙(锁) 计算机图形学(图像) 几何学 计算机安全 数学
作者
Jian Kang,Na Chen,Mei Li,Shanjun Mao,Haoyuan Zhang,Fan Yang,Hui Liu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (1): 97-97 被引量:1
标识
DOI:10.3390/rs16010097
摘要

In recent years, point cloud segmentation technology has increasingly played a pivotal role in tunnel construction and maintenance. Currently, traditional methods for segmenting point clouds in tunnel scenes often rely on a multitude of attribute information, including spatial distribution, color, normal vectors, intensity, and density. However, the underground tunnel scenes show greater complexity than road tunnel scenes, such as dim light, indistinct boundaries of tunnel walls, and disordered pipelines. Furthermore, issues pertaining to data quality, such as the lack of color information and insufficient annotated data, contribute to the subpar performance of conventional point cloud segmentation algorithms. To address this issue, a 3D point cloud segmentation framework specifically for underground tunnels is proposed based on the Segment Anything Model (SAM). This framework effectively leverages the generalization capability of the visual foundation model to automatically adapt to various scenes and perform efficient segmentation of tunnel point clouds. Specifically, the tunnel is first sliced along its direction on the tunnel line. Then, each sliced point cloud is projected onto a two-dimensional plane. Various projection methods and point cloud coloring techniques are employed to enhance SAM’s segmentation performance in images. Finally, the semantic segmentation of the entire underground tunnel is achieved by a small set of manually annotated semantic labels used as prompts in a progressive and recursive manner. The key feature of this method lies in its independence from model training, as it directly and efficiently addresses tunnel point cloud segmentation challenges by capitalizing on the generalization capability of foundation model. Comparative experiments against classical region growing algorithms and PointNet++ deep learning algorithms demonstrate the superior performance of our proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘不怂完成签到,获得积分10
刚刚
谨慎达完成签到 ,获得积分10
1秒前
分不分完成签到 ,获得积分10
3秒前
6秒前
8秒前
碧蓝香芦完成签到 ,获得积分10
9秒前
自由冰凡完成签到 ,获得积分10
13秒前
花非花雾非雾完成签到,获得积分10
17秒前
赘婿应助幻月采纳,获得10
20秒前
zzyh307完成签到 ,获得积分0
22秒前
24秒前
27秒前
31秒前
Missyang发布了新的文献求助10
31秒前
32秒前
32秒前
细心的念薇完成签到,获得积分10
33秒前
顾矜应助三井M采纳,获得10
35秒前
科研通AI2S应助独特雁玉采纳,获得10
35秒前
lzp发布了新的文献求助10
36秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
ding应助科研通管家采纳,获得10
38秒前
xx完成签到 ,获得积分10
39秒前
上官发布了新的文献求助10
39秒前
41秒前
ding应助Ni采纳,获得10
43秒前
内向映天完成签到 ,获得积分10
47秒前
47秒前
Orange应助lzp采纳,获得10
48秒前
Ni发布了新的文献求助10
51秒前
上官完成签到,获得积分10
52秒前
默默的阑悦完成签到,获得积分20
57秒前
小禾一定行完成签到 ,获得积分10
58秒前
1分钟前
斯文的凝珍完成签到,获得积分10
1分钟前
认真路灯完成签到 ,获得积分10
1分钟前
平常的过客完成签到,获得积分10
1分钟前
1分钟前
阿衍完成签到 ,获得积分10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3252945
求助须知:如何正确求助?哪些是违规求助? 2895451
关于积分的说明 8286655
捐赠科研通 2564284
什么是DOI,文献DOI怎么找? 1392206
科研通“疑难数据库(出版商)”最低求助积分说明 652069
邀请新用户注册赠送积分活动 629377