A Point Cloud Segmentation Method for Dim and Cluttered Underground Tunnel Scenes Based on the Segment Anything Model

点云 分割 计算机科学 计算机视觉 点(几何) 人工智能 钥匙(锁) 计算机图形学(图像) 几何学 计算机安全 数学
作者
Jian Kang,Na Chen,Mei Li,Shanjun Mao,Haoyuan Zhang,Fan Yang,Hui Liu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (1): 97-97 被引量:1
标识
DOI:10.3390/rs16010097
摘要

In recent years, point cloud segmentation technology has increasingly played a pivotal role in tunnel construction and maintenance. Currently, traditional methods for segmenting point clouds in tunnel scenes often rely on a multitude of attribute information, including spatial distribution, color, normal vectors, intensity, and density. However, the underground tunnel scenes show greater complexity than road tunnel scenes, such as dim light, indistinct boundaries of tunnel walls, and disordered pipelines. Furthermore, issues pertaining to data quality, such as the lack of color information and insufficient annotated data, contribute to the subpar performance of conventional point cloud segmentation algorithms. To address this issue, a 3D point cloud segmentation framework specifically for underground tunnels is proposed based on the Segment Anything Model (SAM). This framework effectively leverages the generalization capability of the visual foundation model to automatically adapt to various scenes and perform efficient segmentation of tunnel point clouds. Specifically, the tunnel is first sliced along its direction on the tunnel line. Then, each sliced point cloud is projected onto a two-dimensional plane. Various projection methods and point cloud coloring techniques are employed to enhance SAM’s segmentation performance in images. Finally, the semantic segmentation of the entire underground tunnel is achieved by a small set of manually annotated semantic labels used as prompts in a progressive and recursive manner. The key feature of this method lies in its independence from model training, as it directly and efficiently addresses tunnel point cloud segmentation challenges by capitalizing on the generalization capability of foundation model. Comparative experiments against classical region growing algorithms and PointNet++ deep learning algorithms demonstrate the superior performance of our proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助kids采纳,获得10
刚刚
1秒前
研友_LOokQL发布了新的文献求助10
1秒前
科研完成签到,获得积分10
1秒前
CY发布了新的文献求助10
1秒前
科研通AI6应助dlfshr采纳,获得10
1秒前
zzy完成签到,获得积分10
2秒前
嘻嘻发布了新的文献求助10
2秒前
2秒前
壮观静柏完成签到 ,获得积分10
3秒前
3秒前
3秒前
王焕玉完成签到,获得积分10
3秒前
思源应助星辰坠于海采纳,获得10
4秒前
4秒前
田様应助幽默的依秋采纳,获得10
4秒前
5秒前
Zz完成签到,获得积分10
6秒前
6秒前
6秒前
Jindyla完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
hazekurt发布了新的文献求助10
7秒前
7秒前
Echo发布了新的文献求助10
7秒前
杂草的生活给vivi的求助进行了留言
7秒前
脑洞疼应助zhuxi采纳,获得10
7秒前
7秒前
春风沂水发布了新的文献求助20
7秒前
8秒前
8秒前
Zengjx完成签到,获得积分20
8秒前
8秒前
陈泽显发布了新的文献求助10
9秒前
snotman完成签到,获得积分10
9秒前
10秒前
董晏殊发布了新的文献求助10
10秒前
10秒前
浮世一梦发布了新的文献求助10
10秒前
abcd_1067发布了新的文献求助10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066