A Point Cloud Segmentation Method for Dim and Cluttered Underground Tunnel Scenes Based on the Segment Anything Model

点云 分割 计算机科学 计算机视觉 点(几何) 人工智能 钥匙(锁) 计算机图形学(图像) 几何学 计算机安全 数学
作者
Jian Kang,Na Chen,Mei Li,Shanjun Mao,Haoyuan Zhang,Fan Yang,Hui Liu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (1): 97-97 被引量:1
标识
DOI:10.3390/rs16010097
摘要

In recent years, point cloud segmentation technology has increasingly played a pivotal role in tunnel construction and maintenance. Currently, traditional methods for segmenting point clouds in tunnel scenes often rely on a multitude of attribute information, including spatial distribution, color, normal vectors, intensity, and density. However, the underground tunnel scenes show greater complexity than road tunnel scenes, such as dim light, indistinct boundaries of tunnel walls, and disordered pipelines. Furthermore, issues pertaining to data quality, such as the lack of color information and insufficient annotated data, contribute to the subpar performance of conventional point cloud segmentation algorithms. To address this issue, a 3D point cloud segmentation framework specifically for underground tunnels is proposed based on the Segment Anything Model (SAM). This framework effectively leverages the generalization capability of the visual foundation model to automatically adapt to various scenes and perform efficient segmentation of tunnel point clouds. Specifically, the tunnel is first sliced along its direction on the tunnel line. Then, each sliced point cloud is projected onto a two-dimensional plane. Various projection methods and point cloud coloring techniques are employed to enhance SAM’s segmentation performance in images. Finally, the semantic segmentation of the entire underground tunnel is achieved by a small set of manually annotated semantic labels used as prompts in a progressive and recursive manner. The key feature of this method lies in its independence from model training, as it directly and efficiently addresses tunnel point cloud segmentation challenges by capitalizing on the generalization capability of foundation model. Comparative experiments against classical region growing algorithms and PointNet++ deep learning algorithms demonstrate the superior performance of our proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ShinrayLee完成签到,获得积分10
刚刚
SYLH应助1101592875采纳,获得30
刚刚
刚刚
伍慕儿完成签到,获得积分10
1秒前
多情的初蓝完成签到,获得积分10
1秒前
pdf完成签到,获得积分10
1秒前
NexusExplorer应助www采纳,获得40
1秒前
闪闪雪糕完成签到,获得积分10
2秒前
我是老大应助porcelain采纳,获得10
2秒前
畅快一一发布了新的文献求助10
2秒前
微笑向日葵完成签到,获得积分10
3秒前
葡萄茶茶果完成签到,获得积分10
3秒前
勤奋静曼发布了新的文献求助10
3秒前
细水长流发布了新的文献求助10
4秒前
4秒前
4秒前
adjuster完成签到,获得积分10
5秒前
BG应助不喝可乐采纳,获得10
5秒前
科研通AI2S应助灿华采纳,获得30
5秒前
5秒前
iebdus123发布了新的文献求助10
6秒前
6秒前
锅巴发布了新的文献求助10
6秒前
乐乐应助西陆采纳,获得10
6秒前
6秒前
7秒前
7秒前
董帅关注了科研通微信公众号
7秒前
彳亍1117应助活力的妙芙采纳,获得10
8秒前
叮叮发布了新的文献求助10
8秒前
lenny发布了新的文献求助10
8秒前
8秒前
小蘑菇应助kk采纳,获得10
9秒前
Lily发布了新的文献求助10
9秒前
lrcty98完成签到 ,获得积分10
9秒前
彭于晏应助诚心谷南采纳,获得10
10秒前
泥花完成签到,获得积分10
10秒前
所所应助太阳花采纳,获得10
10秒前
11秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702336
求助须知:如何正确求助?哪些是违规求助? 3252249
关于积分的说明 9878392
捐赠科研通 2964282
什么是DOI,文献DOI怎么找? 1625586
邀请新用户注册赠送积分活动 770101
科研通“疑难数据库(出版商)”最低求助积分说明 742762