🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

An Improved Multi-Objective Hybrid Genetic-Simulated Annealing Algorithm for AGV Scheduling under Composite Operation Mode

渡线 模拟退火 算法 数学优化 计算机科学 基于群体的增量学习 遗传算法 适应度函数 加权 编码(社会科学) 熵(时间箭头) 作业车间调度 数学 地铁列车时刻表 人工智能 医学 统计 操作系统 物理 量子力学 放射科
作者
Jiamin Xiang,Ying Zhang,Xiaohua Cao,Zhigang Zhou
出处
期刊:Computers, materials & continua 卷期号:77 (3): 3443-3466 被引量:2
标识
DOI:10.32604/cmc.2023.045120
摘要

This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles (AGVs) under the composite operation mode. The multi-objective model aims to minimize the maximum completion time, the total distance covered by AGVs, and the distance traveled while empty-loaded. The improved hybrid algorithm combines the improved genetic algorithm (GA) and the simulated annealing algorithm (SA) to strengthen the local search ability of the algorithm and improve the stability of the calculation results. Based on the characteristics of the composite operation mode, the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem. The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems. A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation. The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy (AEGA) in terms of convergence speed and solution results, and the effectiveness of the multi-objective solution is proved. All three objectives are optimized and the proposed algorithm has an optimization of 7.6% respectively compared with the GA and 3.4% compared with the AEGA in terms of the objective of maximum completion time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨声完成签到,获得积分10
2秒前
Haha123完成签到,获得积分10
3秒前
jindou完成签到,获得积分10
3秒前
MYY发布了新的文献求助10
5秒前
5秒前
品品完成签到,获得积分10
8秒前
斯文败类应助xx采纳,获得10
8秒前
情怀应助有魅力的电脑采纳,获得10
9秒前
苗条的依珊完成签到,获得积分10
9秒前
redsen发布了新的文献求助10
10秒前
11秒前
12秒前
14秒前
英俊的铭应助ZJH采纳,获得10
16秒前
xx完成签到,获得积分10
17秒前
兴奋硬币发布了新的文献求助10
17秒前
Rainbow发布了新的文献求助10
17秒前
王文静应助kid1412采纳,获得10
18秒前
爆米花应助洁净的锦程采纳,获得10
19秒前
19秒前
吕小软发布了新的文献求助10
20秒前
20秒前
丘比特应助aliu采纳,获得30
20秒前
脑洞疼应助醉熏的航空采纳,获得10
21秒前
MXene应助依然采纳,获得20
21秒前
啾啾发布了新的文献求助10
24秒前
25秒前
marktitov应助长情的涟妖采纳,获得10
25秒前
26秒前
27秒前
28秒前
科研通AI5应助兴奋硬币采纳,获得10
28秒前
明理觅夏完成签到 ,获得积分10
28秒前
29秒前
redsen完成签到,获得积分20
29秒前
30秒前
依然完成签到,获得积分10
30秒前
123完成签到,获得积分10
31秒前
31秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3599424
求助须知:如何正确求助?哪些是违规求助? 3168132
关于积分的说明 9556296
捐赠科研通 2874584
什么是DOI,文献DOI怎么找? 1578148
邀请新用户注册赠送积分活动 741954
科研通“疑难数据库(出版商)”最低求助积分说明 725018