Real-Time Tool-Path Planning Using Deep Learning for Subtractive Manufacturing

运动规划 计算机科学 人工神经网络 计算机辅助设计 花键(机械) 人工智能 路径(计算) 计算机工程 算法 工业工程 机器学习 数学优化 数据挖掘 工程类 工程制图 机器人 数学 结构工程 程序设计语言
作者
Yi-Fei Feng,Hong-Yu Ma,Li‐Yong Shen,Chun-Ming Yuan,Xin Jiang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 5979-5988 被引量:3
标识
DOI:10.1109/tii.2023.3342474
摘要

Tool-path planning is a crucial factor of computer-aided design (CAD) and computer-aided manufacturing (CAM). Previous path generation methods often transform the problem into local or global optimization methods to solve it, leading to a long computational time. With the development of modern industry, real-time path planning is becoming an urgent issue in advanced manufacturing. This article proposes an efficient neural network-based direct tool-path generation method on B-spline surface for subtractive end milling. In order to build the first corresponding dataset, adaptive iso-scallop height method is proposed, which can effectively avoid generating breakpoints at the boundary. B-Spline reparameterization is used to fit discrete tool paths to obtain regular control points data structure for further deep learning. After that, an intelligent neural network is proposed to learn the relationship between the input B-Spline surface and the reparameterized tool paths. Finally, experimental results and case study are provided to illustrate and clarify our method, which only needs a few microseconds of planning time while ensuring the quality of the generated paths. Due to its simple structure and low computational burden, this method can be easily applied to CAD/CAM software.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Beclin1发布了新的文献求助10
1秒前
仰望发布了新的文献求助10
1秒前
1秒前
华仔应助koayer采纳,获得10
1秒前
赟糖发布了新的文献求助10
1秒前
爆米花应助BallQ采纳,获得10
2秒前
2秒前
青山发布了新的文献求助10
2秒前
2秒前
芒琪完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI6应助凉皮亮晶晶采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
zxizx关注了科研通微信公众号
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
在水一方应助hhwoyebudong采纳,获得10
3秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
zhang发布了新的文献求助10
4秒前
子车茗应助科研通管家采纳,获得10
4秒前
demi完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
xxfsx应助科研通管家采纳,获得10
4秒前
4秒前
BareBear应助科研通管家采纳,获得10
4秒前
niqiu完成签到 ,获得积分10
4秒前
5秒前
5秒前
xxfsx应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710