Real-Time Tool-Path Planning Using Deep Learning for Subtractive Manufacturing

运动规划 计算机科学 人工神经网络 计算机辅助设计 花键(机械) 人工智能 路径(计算) 计算机工程 算法 工业工程 机器学习 数学优化 数据挖掘 工程类 工程制图 机器人 数学 结构工程 程序设计语言
作者
Yi-Fei Feng,Hong-Yu Ma,Li‐Yong Shen,Chun-Ming Yuan,Xin Jiang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 5979-5988 被引量:3
标识
DOI:10.1109/tii.2023.3342474
摘要

Tool-path planning is a crucial factor of computer-aided design (CAD) and computer-aided manufacturing (CAM). Previous path generation methods often transform the problem into local or global optimization methods to solve it, leading to a long computational time. With the development of modern industry, real-time path planning is becoming an urgent issue in advanced manufacturing. This article proposes an efficient neural network-based direct tool-path generation method on B-spline surface for subtractive end milling. In order to build the first corresponding dataset, adaptive iso-scallop height method is proposed, which can effectively avoid generating breakpoints at the boundary. B-Spline reparameterization is used to fit discrete tool paths to obtain regular control points data structure for further deep learning. After that, an intelligent neural network is proposed to learn the relationship between the input B-Spline surface and the reparameterized tool paths. Finally, experimental results and case study are provided to illustrate and clarify our method, which only needs a few microseconds of planning time while ensuring the quality of the generated paths. Due to its simple structure and low computational burden, this method can be easily applied to CAD/CAM software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助xxx采纳,获得10
刚刚
吕倩发布了新的文献求助10
1秒前
李健的小迷弟应助奉年采纳,获得10
1秒前
2秒前
3秒前
3秒前
困困困困发布了新的文献求助10
3秒前
小黄包子完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
zaizai完成签到,获得积分10
5秒前
上官若男应助tuyfytjt采纳,获得10
5秒前
研友_Z60ObL完成签到,获得积分10
6秒前
小蘑菇应助欢呼尔烟采纳,获得10
6秒前
周宇飞发布了新的文献求助20
6秒前
败者食尘完成签到,获得积分10
7秒前
科目三应助nan采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
彭于晏应助mumu采纳,获得10
7秒前
李爱国应助Fareth采纳,获得10
8秒前
聪慧小霜应助zfcaabbcc采纳,获得10
8秒前
momo发布了新的文献求助10
8秒前
申左一发布了新的文献求助10
8秒前
ZYH发布了新的文献求助10
9秒前
KK发布了新的文献求助10
9秒前
斯文败类应助shusen采纳,获得10
9秒前
9秒前
lincool完成签到,获得积分10
10秒前
ldkl应助收手吧大哥采纳,获得30
10秒前
完美世界应助haoqisheng采纳,获得10
10秒前
小马甲应助郑zz采纳,获得10
11秒前
魔幻小蚂蚁完成签到,获得积分10
11秒前
11秒前
xzp发布了新的文献求助10
11秒前
YU关注了科研通微信公众号
11秒前
11秒前
cw发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562