医学
内分泌学
内科学
高尿酸血症
痛风
尿酸
合成代谢
磷酸戊糖途径
下调和上调
生物化学
糖酵解
生物
新陈代谢
基因
标识
DOI:10.1016/j.jacc.2023.10.030
摘要
Gout is characterized by increased production of purines (through the pentose phosphate pathway), which is coupled with reduced renal or intestinal excretion of urate. Concurrent upregulation of nutrient surplus signaling (mammalian target of rapamycin and hypoxia-inducible factor-1a) and downregulation of nutrient deprivation signaling (sirtuin-1 and adenosine monophosphate–activated protein kinase) redirects glucose toward anabolic pathways (rather than adenosine triphosphate production), thus promoting heightened oxidative stress and cardiomyocyte and proximal tubular dysfunction, leading to cardiomyopathy and kidney disease. Hyperuricemia is a marker (rather than a driver) of these cellular stresses. By inducing a state of starvation mimicry in a state of nutrient surplus, sodium-glucose cotransporter-2 inhibitors decrease flux through the pentose phosphate pathway (thereby attenuating purine and urate synthesis) while promoting renal urate excretion. These convergent actions exert a meaningful effect to lower serum uric acid by ≈0.6 to 1.5 mg/dL and to reduce the risk of gout by 30% to 50% in large-scale clinical trials.
科研通智能强力驱动
Strongly Powered by AbleSci AI