机械生物学
机械转化
分子
动力学(音乐)
力谱学
整合素
纳米技术
生物物理学
生物系统
化学
生物
原子力显微镜
物理
细胞
材料科学
细胞生物学
有机化学
生物化学
声学
作者
Yuru Hu,Hongyun Li,Chen Zhang,Jingjing Feng,Wenxu Wang,Wei Chen,Miao Yu,Xinghua Zhang,Zheng Liu
标识
DOI:10.1101/2024.03.09.584267
摘要
Accurate measurement of mechanical forces in cells is key to understanding how cells sense and respond to mechanical stimuli, a central aspect of mechanobiology. However, accurately quantifying dynamic forces at the single-molecule level in living cells is a significant challenge. Here, we’ve developed the DNA-based ForceChrono probe to enable in-depth studies of integrin force dynamics at the single-molecule level in living cells. By illuminating two distinct mechanical points and circumventing the inherent fluctuations of single-molecule fluorescence, the ForceChrono probe enables analysis of the complex dynamics of mechanical forces at the single-molecule level, such as loading rates and durations. Our results refine previous broad estimates of cellular loading rates to a more precise range of 0.5 to 2 pN/s, shedding light on the specifics of cellular mechanics. In addition, this study reveals a critical link between the magnitude and duration of integrin forces, consistent with the catch-bond behavior demonstrated in vitro. The ForceChrono probe has distinct advantages, such as precise analysis of single-molecule force dynamics and robust resistance to fluorescence fluctuations, which will significantly advance our understanding of cell adhesion and mechanotransduction at the single-molecule level.
科研通智能强力驱动
Strongly Powered by AbleSci AI