清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning improves early prediction of organ failure in hyperlipidemia acute pancreatitis using clinical and abdominal CT features

医学 急性胰腺炎 接收机工作特性 队列 胰腺炎 机器学习 人口统计学的 单变量 单变量分析 随机森林 计算机断层摄影术 人工智能 试验预测值 内科学 放射科 多元分析 多元统计 人口学 社会学 计算机科学
作者
Weihang Lin,Yingbao Huang,Jiale Zhu,Houzhang Sun,Na Su,Jingye Pan,Junkang Xu,Lifang Chen
出处
期刊:Pancreatology [Elsevier BV]
卷期号:24 (3): 350-356 被引量:2
标识
DOI:10.1016/j.pan.2024.02.003
摘要

This study aimed to investigate and validate machine-learning predictive models combining computed tomography and clinical data to early predict organ failure (OF) in Hyperlipidemic acute pancreatitis (HLAP). Demographics, laboratory parameters and computed tomography imaging data of 314 patients with HLAP from the First Affiliated Hospital of Wenzhou Medical University between 2017 and 2021, were retrospectively analyzed. Sixty-five percent of patients (n = 204) were assigned to the training group and categorized as patients with and without OF. Parameters were compared by univariate analysis. Machine-learning methods including random forest (RF) were used to establish model to predict OF of HLAP. Areas under the curves (AUCs) of receiver operating characteristic were calculated. The remaining 35% patients (n = 110) were assigned to the validation group to evaluate the performance of models to predict OF. Ninety-three (45.59%) and fifty (45.45%) patients from the training and the validation cohort, respectively, developed OF. The RF model showed the best performance to predict OF, with the highest AUC value of 0.915. The sensitivity (0.828) and accuracy (0.814) of RF model were both the highest among the five models in the study cohort. In the validation cohort, RF model continued to show the highest AUC (0.820), accuracy (0.773) and sensitivity (0.800) to predict OF in HLAP, while the positive and negative likelihood ratios and post-test probability were 3.22, 0.267 and 72.85%, respectively. Machine-learning models can be used to predict OF occurrence in HLAP in our pilot study. RF model showed the best predictive performance, which may be a promising candidate for further clinical validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红茸茸羊完成签到 ,获得积分10
2秒前
传奇3应助细心的语蓉采纳,获得30
11秒前
14秒前
37秒前
42秒前
48秒前
8R60d8应助张兔兔采纳,获得10
50秒前
50秒前
怪杰发布了新的文献求助10
52秒前
LHL完成签到,获得积分10
54秒前
斯文败类应助怪杰采纳,获得10
1分钟前
思源应助Dz1990m采纳,获得10
1分钟前
怪杰发布了新的文献求助10
1分钟前
1分钟前
Dz1990m发布了新的文献求助10
1分钟前
1分钟前
怪杰发布了新的文献求助10
1分钟前
大个应助怪杰采纳,获得10
1分钟前
量子星尘发布了新的文献求助80
1分钟前
2分钟前
2分钟前
郜郜嗳发布了新的文献求助10
2分钟前
怪杰发布了新的文献求助10
2分钟前
火星的雪完成签到 ,获得积分10
2分钟前
郜郜嗳完成签到,获得积分10
2分钟前
万能图书馆应助怪杰采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
kokoko完成签到,获得积分10
3分钟前
3分钟前
chcmy完成签到 ,获得积分0
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
Sunny完成签到,获得积分10
4分钟前
4分钟前
英喆完成签到 ,获得积分10
4分钟前
arsenal完成签到 ,获得积分10
4分钟前
ryan1300完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292