清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning improves early prediction of organ failure in hyperlipidemia acute pancreatitis using clinical and abdominal CT features

医学 急性胰腺炎 接收机工作特性 队列 胰腺炎 机器学习 人口统计学的 单变量 单变量分析 随机森林 计算机断层摄影术 人工智能 试验预测值 内科学 放射科 多元分析 多元统计 人口学 社会学 计算机科学
作者
Weihang Lin,Yingbao Huang,Jiale Zhu,Houzhang Sun,Na Su,Jingye Pan,Junkang Xu,Lifang Chen
出处
期刊:Pancreatology [Elsevier]
卷期号:24 (3): 350-356 被引量:2
标识
DOI:10.1016/j.pan.2024.02.003
摘要

This study aimed to investigate and validate machine-learning predictive models combining computed tomography and clinical data to early predict organ failure (OF) in Hyperlipidemic acute pancreatitis (HLAP). Demographics, laboratory parameters and computed tomography imaging data of 314 patients with HLAP from the First Affiliated Hospital of Wenzhou Medical University between 2017 and 2021, were retrospectively analyzed. Sixty-five percent of patients (n = 204) were assigned to the training group and categorized as patients with and without OF. Parameters were compared by univariate analysis. Machine-learning methods including random forest (RF) were used to establish model to predict OF of HLAP. Areas under the curves (AUCs) of receiver operating characteristic were calculated. The remaining 35% patients (n = 110) were assigned to the validation group to evaluate the performance of models to predict OF. Ninety-three (45.59%) and fifty (45.45%) patients from the training and the validation cohort, respectively, developed OF. The RF model showed the best performance to predict OF, with the highest AUC value of 0.915. The sensitivity (0.828) and accuracy (0.814) of RF model were both the highest among the five models in the study cohort. In the validation cohort, RF model continued to show the highest AUC (0.820), accuracy (0.773) and sensitivity (0.800) to predict OF in HLAP, while the positive and negative likelihood ratios and post-test probability were 3.22, 0.267 and 72.85%, respectively. Machine-learning models can be used to predict OF occurrence in HLAP in our pilot study. RF model showed the best predictive performance, which may be a promising candidate for further clinical validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
9秒前
Ajay完成签到 ,获得积分10
9秒前
Klaus完成签到 ,获得积分10
10秒前
胖小羊完成签到 ,获得积分10
44秒前
方白秋完成签到,获得积分0
1分钟前
1分钟前
Ajay发布了新的文献求助30
1分钟前
CipherSage应助丽海张采纳,获得30
1分钟前
赵一完成签到 ,获得积分10
1分钟前
1分钟前
Prometheusss发布了新的文献求助10
1分钟前
丽海张发布了新的文献求助30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
文静身边充满小确幸完成签到 ,获得积分10
2分钟前
2分钟前
Prometheusss发布了新的文献求助10
2分钟前
Prometheusss完成签到,获得积分10
2分钟前
3分钟前
深海理疗发布了新的文献求助10
3分钟前
al完成签到 ,获得积分0
3分钟前
Prometheusss发布了新的文献求助10
3分钟前
下文献的蜉蝣完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
洁净百川完成签到 ,获得积分10
4分钟前
4分钟前
Prometheusss发布了新的文献求助10
4分钟前
fufufu123完成签到 ,获得积分10
5分钟前
nuoberry发布了新的文献求助30
5分钟前
景安白完成签到 ,获得积分10
5分钟前
5分钟前
nuoberry发布了新的文献求助10
5分钟前
科研通AI2S应助景安白采纳,获得30
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561583
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678756
捐赠科研通 4588002
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461583