Machine learning improves early prediction of organ failure in hyperlipidemia acute pancreatitis using clinical and abdominal CT features

医学 急性胰腺炎 接收机工作特性 队列 胰腺炎 机器学习 人口统计学的 单变量 单变量分析 随机森林 计算机断层摄影术 人工智能 试验预测值 内科学 放射科 多元分析 多元统计 人口学 社会学 计算机科学
作者
Weihang Lin,Yingbao Huang,Jiale Zhu,Houzhang Sun,Na Su,Jingye Pan,Junkang Xu,Lifang Chen
出处
期刊:Pancreatology [Elsevier]
卷期号:24 (3): 350-356 被引量:2
标识
DOI:10.1016/j.pan.2024.02.003
摘要

This study aimed to investigate and validate machine-learning predictive models combining computed tomography and clinical data to early predict organ failure (OF) in Hyperlipidemic acute pancreatitis (HLAP). Demographics, laboratory parameters and computed tomography imaging data of 314 patients with HLAP from the First Affiliated Hospital of Wenzhou Medical University between 2017 and 2021, were retrospectively analyzed. Sixty-five percent of patients (n = 204) were assigned to the training group and categorized as patients with and without OF. Parameters were compared by univariate analysis. Machine-learning methods including random forest (RF) were used to establish model to predict OF of HLAP. Areas under the curves (AUCs) of receiver operating characteristic were calculated. The remaining 35% patients (n = 110) were assigned to the validation group to evaluate the performance of models to predict OF. Ninety-three (45.59%) and fifty (45.45%) patients from the training and the validation cohort, respectively, developed OF. The RF model showed the best performance to predict OF, with the highest AUC value of 0.915. The sensitivity (0.828) and accuracy (0.814) of RF model were both the highest among the five models in the study cohort. In the validation cohort, RF model continued to show the highest AUC (0.820), accuracy (0.773) and sensitivity (0.800) to predict OF in HLAP, while the positive and negative likelihood ratios and post-test probability were 3.22, 0.267 and 72.85%, respectively. Machine-learning models can be used to predict OF occurrence in HLAP in our pilot study. RF model showed the best predictive performance, which may be a promising candidate for further clinical validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BlackP发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
刚刚
花城完成签到 ,获得积分10
刚刚
素月分辉完成签到,获得积分10
刚刚
1秒前
jzs完成签到 ,获得积分10
1秒前
华仔应助ZHOU采纳,获得10
3秒前
4秒前
Rita发布了新的文献求助10
4秒前
嘿嘿嘿发布了新的文献求助10
5秒前
6秒前
6秒前
study发布了新的文献求助10
6秒前
misaka完成签到,获得积分10
6秒前
7秒前
zuoyanwin发布了新的文献求助20
7秒前
鳗鱼摇伽发布了新的文献求助10
8秒前
大老黑发布了新的文献求助10
10秒前
夜包子123完成签到,获得积分10
11秒前
执着的翠梅完成签到 ,获得积分10
12秒前
伶俐的草莓完成签到,获得积分10
13秒前
13秒前
拼搏的飞莲完成签到 ,获得积分10
13秒前
wsq完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
ss完成签到,获得积分10
17秒前
科研通AI2S应助鳗鱼摇伽采纳,获得10
17秒前
BlackP完成签到,获得积分10
18秒前
19秒前
20秒前
华仔应助柯白梦采纳,获得10
20秒前
song完成签到,获得积分10
21秒前
21秒前
文静的芮完成签到,获得积分10
21秒前
CQMZY_2025完成签到,获得积分10
23秒前
Evander发布了新的文献求助10
24秒前
大力出奇迹完成签到,获得积分10
25秒前
wei发布了新的文献求助10
25秒前
wasailinlaomu发布了新的文献求助10
25秒前
EchoH应助小绿孩不高兴采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838