金属有机骨架
微生物燃料电池
铜
膜
兴奋剂
金属
氢
燃料电池
化学
材料科学
化学工程
无机化学
环境化学
有机化学
生物化学
光电子学
工程类
物理化学
电极
吸附
阳极
作者
Filiz Uğur Nigiz,Mustafa Akel
标识
DOI:10.1016/j.ijhydene.2024.01.197
摘要
The potential of microbial fuel cell (MFC) technology to generate electricity simultaneously with treating organic and inorganic has gained importance, recently. The efficiency of the MFC system varies according to the types of MFCs, types, and areas of electrodes, separators, substrate, etc … In this study, a dual-chamber (H-type, membrane separator) MFC system was set up and used for electricity production from animal manure. A copper-based metal organic framework (Cu-MOF) was synthesized and used in a polyvinylidene fluoride (PVDF) membrane matrix. The water uptake (WU) value, mechanical strength, and cation exchange capacity (CEC) of the membranes were investigated. MFC performances of the pristine and Cu-MOF incorporated nanocomposite membranes were also performed. Effects of the Cu-MOF ratio (from 1 to 4 wt percentage), the operating time, and external resistance on voltage output and power density were evaluated. As a result, the incorporation of Cu-MOF enhanced the CEC from 1.04 mmol/g to 1.77 mmol/g, and the mechanical strength from 0.55 MPa to 1.15 MPa. The highest power density value was obtained as 4.62 mW/m2 by using 3 wt% of Cu-MOF loaded membrane.
科研通智能强力驱动
Strongly Powered by AbleSci AI