Continuous Sign Language Recognition Method Based on ECA and Time Attention Mechanism

计算机科学 手语 冗余(工程) 帧(网络) 人工智能 编码器 语音识别 特征提取 解码方法 特征(语言学) 模式识别(心理学) 符号(数学) 算法 电信 数学分析 哲学 语言学 数学 操作系统
作者
Yang Wang,Haisheng Li
标识
DOI:10.1109/prai59366.2023.10332074
摘要

Continuous sign language recognition (CSLR) is a many-to-many sequence learning task, and the commonly used method is to extract features and learn sequences from sign language videos through an encoding-decoding network. However, the effective feature information contained in continuous sign language recognition video frames is relatively small, and there is a problem of insufficient feature extraction due to the excessive redundancy information in the frames. Meanwhile, each frame's importance for sign language recognition varies, which directly affects the accuracy of CSLR results. Therefore, this paper proposes a continuous sign language recognition method based on attention mechanism. Firstly, efficient channel attention (ECA) is incorporated into the residual network in the encoder to allow the network to extract more useful information from each frame feature. The activation function used is HardSwish, which further improves the accuracy of the network. Next, the decoder uses a Long Short-Term Memory (LSTM) combined with time attention mechanism, which assigns different weights to different frames, based on their importance. Finally, we tested our model on the CSL100 dataset and achieved competitive results. The experimental results demonstrate that the attention mechanism we introduced is effective in improving the accuracy of continuous sign language recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助wisteety采纳,获得10
2秒前
凡凡关注了科研通微信公众号
2秒前
2秒前
3秒前
3秒前
3秒前
pcns完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
6秒前
6秒前
安详的蜜粉完成签到,获得积分10
7秒前
一二发布了新的文献求助10
7秒前
Owen应助和谐麦片采纳,获得10
8秒前
勤恳擎宇发布了新的文献求助10
8秒前
CHENGJIAO发布了新的文献求助10
8秒前
8秒前
9秒前
顺心冬易发布了新的文献求助10
9秒前
9秒前
10秒前
yu发布了新的文献求助10
10秒前
起司嗯应助科研通管家采纳,获得10
10秒前
nano应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
良辰应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
从容芮应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
11秒前
从容芮应助科研通管家采纳,获得10
11秒前
英俊延恶发布了新的文献求助10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
从容芮应助科研通管家采纳,获得10
11秒前
研友_ZbM2qn应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
nacheol应助科研通管家采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310539
求助须知:如何正确求助?哪些是违规求助? 2943392
关于积分的说明 8514589
捐赠科研通 2618688
什么是DOI,文献DOI怎么找? 1431326
科研通“疑难数据库(出版商)”最低求助积分说明 664442
邀请新用户注册赠送积分活动 649626