聚二甲基硅氧烷
结冰
制作
涂层
材料科学
腐蚀
复合材料
纳米技术
地质学
海洋学
医学
替代医学
病理
作者
Yixuan Zhang,Lei Wang,Xueying Zhao,Huige Yang,Jie Liu,Jianjun Wang
摘要
The rapid realization of efficient anti-icing coatings on diverse substrates is of vital value for practical applications. However, current approaches for rapid preparations of anti-icing coatings are still deficient regarding their surface universality and accessibility. Here, we report a simple processing approach to rapidly form icephobic liquid-like polydimethylsiloxane (PDMS) brushes on various substrates, including metals, ceramics, glass, and plastics. A poly(dimethylsiloxane), trimethoxysilane is applied as a reactant under the catalysis of a minimal amount of acid formed by hydrolysis of dichlorodimethylsilane. With such an advantage, this approach is approved to be applicable of coating metal surfaces with less corrosion. The distinctive flexibility of the PDMS chains provides a liquid-like property to the coating showing low contact angle hysteresis and ice adhesion strength. Notably, the ice adhesion strength remains similar across a wide temperature window, from -70 to -10 °C, with a value of 18.4 kPa. The PDMS brushes demonstrate perfect capability for resisting acid and alkali corrosions, ultra-violet degradation, and even tens of icing/deicing cycles. Moreover, the liquid-like coating can also form at supercooling conditions, such as -20 °C, and shows an outstanding anti-icing/deicing performance, which meets the in situ coating reformation requirement under extreme conditions when it is damaged. This instantly forming anti-icing material will benefit from resisting instantaneous ice accretion on surfaces under extremely cold conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI