Online monitoring of air quality using PCA-based sequential learning

计算机科学 空气质量指数 在线学习 人工智能 地理 万维网 气象学
作者
Xiulin Xie,Nicole Qian,Peihua Qiu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (1) 被引量:3
标识
DOI:10.1214/23-aoas1803
摘要

Air pollution surveillance is critically important for public health. One air pollutant, ozone, is extremely challenging to analyze properly, as it is a secondary pollutant caused by complex chemical reactions in the air and does not emit directly into the atmosphere. Numerous environmental studies confirm that ozone concentration levels are associated with meteorological conditions, and long-term exposure to high ozone concentration levels is associated with the incidence of many diseases, including asthma, respiratory, and cardiovascular diseases. Thus, it is important to develop an air pollution surveillance system to collect both air pollution and meteorological data and monitor the data continuously over time. To this end, statistical process control (SPC) charts provide a major statistical tool. But most existing SPC charts are designed for cases when the in-control (IC) process observations at different times are assumed to be independent and identically distributed. The air pollution and meteorological data would not satisfy these conditions due to serial data correlation, high dimensionality, seasonality, and other complex data structure. Motivated by an application to monitor the ground ozone concentration levels in the Houston–Galveston–Brazoria (HGB) area, we developed a new process monitoring method using principal component analysis and sequential learning. The new method can accommodate high dimensionality, time-varying IC process distribution, serial data correlation, and nonparametric data distribution. It is shown to be a reliable analytic tool for online monitoring of air quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的万天完成签到 ,获得积分10
1秒前
Lucas应助江阳宏采纳,获得10
1秒前
菜菜泽完成签到,获得积分10
1秒前
丘比特应助Khan采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
bhjSIde完成签到,获得积分10
3秒前
JamesPei应助scalar采纳,获得30
5秒前
菜菜泽发布了新的文献求助10
5秒前
潇洒的乌龟完成签到 ,获得积分10
6秒前
诚心青曼发布了新的文献求助10
8秒前
科研通AI6应助WIKQ采纳,获得10
8秒前
科研通AI6应助WIKQ采纳,获得10
8秒前
9秒前
baobaonaixi完成签到,获得积分10
9秒前
kxm发布了新的文献求助10
9秒前
yy3发布了新的文献求助10
9秒前
10秒前
10秒前
研友_enP05n完成签到,获得积分10
10秒前
11秒前
daifei完成签到,获得积分10
11秒前
14秒前
英吉利25发布了新的文献求助10
14秒前
Jasper应助合法合规采纳,获得10
14秒前
赘婿应助kxm采纳,获得10
14秒前
打打应助ALKUT采纳,获得10
14秒前
不会取名完成签到,获得积分10
15秒前
江阳宏发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
Phantasyice发布了新的文献求助10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
LCFXR发布了新的文献求助10
17秒前
关闭右耳完成签到,获得积分10
17秒前
桐桐应助VDC采纳,获得10
18秒前
19秒前
LLLLL完成签到 ,获得积分10
20秒前
22完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660080
求助须知:如何正确求助?哪些是违规求助? 4831261
关于积分的说明 15089149
捐赠科研通 4818692
什么是DOI,文献DOI怎么找? 2578738
邀请新用户注册赠送积分活动 1533349
关于科研通互助平台的介绍 1492094