Online monitoring of air quality using PCA-based sequential learning

计算机科学 空气质量指数 在线学习 人工智能 地理 万维网 气象学
作者
Xiulin Xie,Nicole Qian,Peihua Qiu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (1) 被引量:3
标识
DOI:10.1214/23-aoas1803
摘要

Air pollution surveillance is critically important for public health. One air pollutant, ozone, is extremely challenging to analyze properly, as it is a secondary pollutant caused by complex chemical reactions in the air and does not emit directly into the atmosphere. Numerous environmental studies confirm that ozone concentration levels are associated with meteorological conditions, and long-term exposure to high ozone concentration levels is associated with the incidence of many diseases, including asthma, respiratory, and cardiovascular diseases. Thus, it is important to develop an air pollution surveillance system to collect both air pollution and meteorological data and monitor the data continuously over time. To this end, statistical process control (SPC) charts provide a major statistical tool. But most existing SPC charts are designed for cases when the in-control (IC) process observations at different times are assumed to be independent and identically distributed. The air pollution and meteorological data would not satisfy these conditions due to serial data correlation, high dimensionality, seasonality, and other complex data structure. Motivated by an application to monitor the ground ozone concentration levels in the Houston–Galveston–Brazoria (HGB) area, we developed a new process monitoring method using principal component analysis and sequential learning. The new method can accommodate high dimensionality, time-varying IC process distribution, serial data correlation, and nonparametric data distribution. It is shown to be a reliable analytic tool for online monitoring of air quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ding应助魔芋爽采纳,获得10
1秒前
lin完成签到,获得积分10
1秒前
3秒前
小二郎应助Qiiiiii采纳,获得10
3秒前
zyp发布了新的文献求助10
3秒前
drtianyunhong完成签到,获得积分10
4秒前
4秒前
桐桐应助三三搞科研采纳,获得10
5秒前
拓跋涵易完成签到,获得积分10
5秒前
5秒前
6秒前
CC发布了新的文献求助10
6秒前
6秒前
科研通AI5应助aura采纳,获得10
7秒前
微笑的小蚂蚁完成签到,获得积分10
8秒前
苗条的沛凝完成签到,获得积分20
8秒前
气场完成签到,获得积分20
9秒前
ypl发布了新的文献求助10
9秒前
12发布了新的文献求助10
9秒前
天天发布了新的文献求助10
11秒前
Tylose发布了新的文献求助10
11秒前
11秒前
11秒前
踏实口红完成签到,获得积分10
11秒前
13秒前
鲤鱼发布了新的文献求助60
13秒前
小蘑菇应助笙笙采纳,获得10
14秒前
keke完成签到,获得积分10
14秒前
weige发布了新的文献求助10
14秒前
cyrong应助黑黑采纳,获得10
14秒前
咖喱鸡完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
深情安青应助TopBanana采纳,获得10
16秒前
常青的海鲜完成签到,获得积分10
18秒前
Hello应助111采纳,获得10
19秒前
Owen应助木子采纳,获得10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488637
求助须知:如何正确求助?哪些是违规求助? 3076232
关于积分的说明 9144270
捐赠科研通 2768577
什么是DOI,文献DOI怎么找? 1519188
邀请新用户注册赠送积分活动 703703
科研通“疑难数据库(出版商)”最低求助积分说明 701952