Online monitoring of air quality using PCA-based sequential learning

计算机科学 空气质量指数 在线学习 人工智能 地理 万维网 气象学
作者
Xiulin Xie,Nicole Qian,Peihua Qiu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (1) 被引量:3
标识
DOI:10.1214/23-aoas1803
摘要

Air pollution surveillance is critically important for public health. One air pollutant, ozone, is extremely challenging to analyze properly, as it is a secondary pollutant caused by complex chemical reactions in the air and does not emit directly into the atmosphere. Numerous environmental studies confirm that ozone concentration levels are associated with meteorological conditions, and long-term exposure to high ozone concentration levels is associated with the incidence of many diseases, including asthma, respiratory, and cardiovascular diseases. Thus, it is important to develop an air pollution surveillance system to collect both air pollution and meteorological data and monitor the data continuously over time. To this end, statistical process control (SPC) charts provide a major statistical tool. But most existing SPC charts are designed for cases when the in-control (IC) process observations at different times are assumed to be independent and identically distributed. The air pollution and meteorological data would not satisfy these conditions due to serial data correlation, high dimensionality, seasonality, and other complex data structure. Motivated by an application to monitor the ground ozone concentration levels in the Houston–Galveston–Brazoria (HGB) area, we developed a new process monitoring method using principal component analysis and sequential learning. The new method can accommodate high dimensionality, time-varying IC process distribution, serial data correlation, and nonparametric data distribution. It is shown to be a reliable analytic tool for online monitoring of air quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
楠瓜完成签到,获得积分10
刚刚
慕青应助聪慧雪糕采纳,获得10
2秒前
2秒前
xkhxh完成签到 ,获得积分10
2秒前
111完成签到,获得积分10
2秒前
内卷没有赢家完成签到,获得积分10
2秒前
星辰大海应助可达鸭采纳,获得30
3秒前
韩晚渔完成签到 ,获得积分10
6秒前
杨雨帆发布了新的文献求助10
6秒前
小雨完成签到,获得积分10
9秒前
11秒前
情怀应助杨雨帆采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得50
12秒前
xzy998应助科研通管家采纳,获得10
12秒前
pcr163应助科研通管家采纳,获得50
12秒前
ggxhygr应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
pcr163应助科研通管家采纳,获得50
13秒前
14秒前
蓝天海完成签到,获得积分0
16秒前
17秒前
聪慧雪糕发布了新的文献求助10
18秒前
谢香辣发布了新的文献求助10
18秒前
共享精神应助walden采纳,获得10
18秒前
18秒前
Adzuki0812完成签到 ,获得积分10
18秒前
温暖厉发布了新的文献求助10
20秒前
6633发布了新的文献求助10
21秒前
科研通AI5应助923148045采纳,获得10
23秒前
聂白晴发布了新的文献求助10
23秒前
自信的九娘完成签到,获得积分10
25秒前
28秒前
轻松香寒完成签到,获得积分20
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967