蛋白激酶B
污渍
PI3K/AKT/mTOR通路
软骨细胞
体内
病理
软骨
骨关节炎
癌症研究
细胞凋亡
化学
医学
分子生物学
生物
解剖
生物化学
替代医学
生物技术
基因
作者
Deren Liu,Wei Mei,Junfeng Kang,Taiyang Liao,Yibao Wei,Lishi Jie,Lei Shi,Peimin Wang,Jun J. Mao,Peng Wu
标识
DOI:10.1016/j.cbi.2024.110897
摘要
Knee osteoarthritis (KOA) is a chronic, disabling knee joint lesion in which degeneration and defects in articular cartilage are the most important features. Casticin (CAS) is a flavonoid extracted from the Chinese herb Vitex species that has anti-inflammatory and antitumor effects. The aim of this study was to investigate the therapeutic and mechanistic effects of CAS on cartilage damage in KOA. A KOA rat model was established by anterior cruciate ligament transection (ACLT), and cartilage morphological changes were assessed by histological analysis and micro-CT scans. Subsequently, chondrocytes were treated with 10 ng/mL IL-1β to establish an OA model. CCK-8 assays and EdU assays were performed to assess the viability of CAS-treated chondrocytes. Western blotting, flow cytometry and Hoechst 33342/PI Double Stain were used to detect chondrocyte apoptosis. Western blotting, qRT‒PCR and ELISA were used to detect changes in inflammatory mediators. In addition, cartilage matrix-related indices were detected by Western blotting, qRT‒PCR and immunofluorescence (IF) analysis. Immunohistochemistry (IHC) and Western blotting were performed to detect the expression of p-PI3K, p-AKT and HIF-1α in vivo and in vitro. Micro-CT, pathological sections and related scores showed that CAS improved the alterations in bony structures and reduced cartilage damage and osteophyte formation in the ACLT model. In vivo, CAS attenuated IL-1β-induced cartilage matrix degradation, apoptosis and the inflammatory response. In addition, CAS inhibited the expression of the PI3K/AKT/HIF-1α signaling pathway in the ACLT animal model and IL-1β cell model. CAS may ameliorate cartilage damage in OA by inhibiting the PI3K/AKT/HIF-1α signaling pathway, suggesting that CAS is a potential strategy for the treatment of OA.
科研通智能强力驱动
Strongly Powered by AbleSci AI