Automatic high-precision crack detection of post-earthquake structure based on self-supervised transfer learning method and SegCrackFormer

学习迁移 计算机科学 传输(计算) 人工智能 地震学 地质学 并行计算
作者
Shiqiao Meng,Ying Zhou,Abouzar Jafari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217231225987
摘要

Accurate crack detection is essential for structural damage assessment after earthquake disasters. However, due to the gap between the target domain of the detected structure and the source domain, it is challenging to achieve high-precision crack segmentation when performing crack detection based on deep learning (DL) in actual engineering. This article proposes a crack segmentation transfer learning method based on a self-supervised learning mechanism and a high-quality pseudo-label generation method, which can significantly improve the detection accuracy in the target domain without pre-made annotations. Besides, to improve the crack segmentation model’s ability to extract local and global features, this article proposes a SegCrackFormer model, which embeds convolutional layers and multi-head self-attention modules. An experiment of the crack segmentation transfer learning method is performed on two open-source crack datasets, METU and Crack500, and a newly proposed LD dataset. The experimental results show that the crack segmentation transfer learning method proposed in this article can improve the mean intersection over union (mIoU) by 38.41% and 15.66% on the Crack500 and LD datasets, respectively. The proposed SegCrackFormer is evaluated through comparative experiments, which demonstrate its superiority over existing crack segmentation models on the METU dataset. Additionally, the proposed method is shown to require significantly less computational resources than other existing models, which highlights the potential of SegCrackFormer as a powerful and efficient model for crack segmentation in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏信怜完成签到,获得积分10
刚刚
chen发布了新的文献求助10
1秒前
雪飞杨完成签到 ,获得积分10
1秒前
Li完成签到,获得积分10
1秒前
DoubleW完成签到 ,获得积分10
2秒前
Dal发布了新的文献求助10
2秒前
3秒前
华新完成签到,获得积分10
3秒前
温暖代芙发布了新的文献求助10
4秒前
YW完成签到,获得积分20
5秒前
Cheshire完成签到,获得积分10
6秒前
ii完成签到 ,获得积分10
6秒前
Yanping完成签到,获得积分10
7秒前
两院候选人完成签到,获得积分10
7秒前
FashionBoy应助是小松啊采纳,获得10
7秒前
土豪的钻石完成签到,获得积分10
9秒前
asdfqwer发布了新的文献求助10
9秒前
Dal完成签到,获得积分10
9秒前
jiajia完成签到,获得积分10
9秒前
10秒前
啦啦啦123完成签到,获得积分10
12秒前
sonicgoboy完成签到,获得积分10
13秒前
包容的忆灵完成签到 ,获得积分10
17秒前
醉熏的伊完成签到,获得积分10
17秒前
老朱完成签到,获得积分10
17秒前
专注笑珊完成签到,获得积分10
19秒前
隐形曼青应助kuai1e采纳,获得10
20秒前
瞿访云完成签到,获得积分10
21秒前
三十四画生完成签到 ,获得积分10
22秒前
zxy应助心已死何来心采纳,获得10
23秒前
26秒前
张00完成签到,获得积分10
26秒前
Zoe发布了新的文献求助10
27秒前
27秒前
njzhangyanyang完成签到,获得积分10
28秒前
张张张xxx应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
IlIIlIlIIIllI应助科研通管家采纳,获得10
30秒前
李爱国应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434871
求助须知:如何正确求助?哪些是违规求助? 3032199
关于积分的说明 8944583
捐赠科研通 2720149
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685877