Automatic high-precision crack detection of post-earthquake structure based on self-supervised transfer learning method and SegCrackFormer

分割 交叉口(航空) 学习迁移 领域(数学分析) 计算机科学 模式识别(心理学) 人工智能 机器学习 工程类 数学 数学分析 航空航天工程
作者
Shiqiao Meng,Ying Zhou,Abouzar Jafari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (6): 3352-3370
标识
DOI:10.1177/14759217231225987
摘要

Accurate crack detection is essential for structural damage assessment after earthquake disasters. However, due to the gap between the target domain of the detected structure and the source domain, it is challenging to achieve high-precision crack segmentation when performing crack detection based on deep learning (DL) in actual engineering. This article proposes a crack segmentation transfer learning method based on a self-supervised learning mechanism and a high-quality pseudo-label generation method, which can significantly improve the detection accuracy in the target domain without pre-made annotations. Besides, to improve the crack segmentation model’s ability to extract local and global features, this article proposes a SegCrackFormer model, which embeds convolutional layers and multi-head self-attention modules. An experiment of the crack segmentation transfer learning method is performed on two open-source crack datasets, METU and Crack500, and a newly proposed LD dataset. The experimental results show that the crack segmentation transfer learning method proposed in this article can improve the mean intersection over union (mIoU) by 38.41% and 15.66% on the Crack500 and LD datasets, respectively. The proposed SegCrackFormer is evaluated through comparative experiments, which demonstrate its superiority over existing crack segmentation models on the METU dataset. Additionally, the proposed method is shown to require significantly less computational resources than other existing models, which highlights the potential of SegCrackFormer as a powerful and efficient model for crack segmentation in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
U9A完成签到,获得积分10
1秒前
大智若愚骨头完成签到,获得积分10
2秒前
科研go完成签到,获得积分10
3秒前
柠檬杨完成签到,获得积分10
4秒前
沉静问芙完成签到 ,获得积分10
4秒前
4秒前
酷酷的贝总完成签到,获得积分10
5秒前
房东家的猫完成签到,获得积分10
6秒前
邹佳林完成签到,获得积分10
10秒前
落霞与孤鹜齐飞完成签到,获得积分10
10秒前
10秒前
研究牲exe完成签到,获得积分10
11秒前
小杭76应助zeng采纳,获得10
11秒前
12秒前
科研圣体完成签到,获得积分10
12秒前
yn完成签到 ,获得积分10
12秒前
13秒前
李大侠完成签到,获得积分10
14秒前
专一的访文完成签到 ,获得积分10
14秒前
XS_QI完成签到 ,获得积分10
18秒前
18秒前
gg完成签到,获得积分10
19秒前
jos完成签到,获得积分10
20秒前
车厘子完成签到 ,获得积分10
23秒前
刘富宇完成签到 ,获得积分10
23秒前
研友_85YNe8发布了新的文献求助30
24秒前
FYX完成签到 ,获得积分10
28秒前
Atlantis完成签到,获得积分10
29秒前
小杭76应助zeng采纳,获得10
30秒前
脆皮小小酥完成签到 ,获得积分10
32秒前
suwan发布了新的文献求助10
33秒前
大方百招完成签到,获得积分10
33秒前
sophia完成签到 ,获得积分0
34秒前
LY0430完成签到 ,获得积分10
34秒前
滕皓轩发布了新的文献求助50
37秒前
38秒前
39秒前
ys完成签到 ,获得积分10
40秒前
lmy完成签到 ,获得积分10
40秒前
彭a完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294096
求助须知:如何正确求助?哪些是违规求助? 4444039
关于积分的说明 13832022
捐赠科研通 4328044
什么是DOI,文献DOI怎么找? 2375902
邀请新用户注册赠送积分活动 1371202
关于科研通互助平台的介绍 1336276