Automatic high-precision crack detection of post-earthquake structure based on self-supervised transfer learning method and SegCrackFormer

分割 交叉口(航空) 学习迁移 领域(数学分析) 计算机科学 模式识别(心理学) 人工智能 机器学习 工程类 数学 数学分析 航空航天工程
作者
Shiqiao Meng,Ying Zhou,Abouzar Jafari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (6): 3352-3370
标识
DOI:10.1177/14759217231225987
摘要

Accurate crack detection is essential for structural damage assessment after earthquake disasters. However, due to the gap between the target domain of the detected structure and the source domain, it is challenging to achieve high-precision crack segmentation when performing crack detection based on deep learning (DL) in actual engineering. This article proposes a crack segmentation transfer learning method based on a self-supervised learning mechanism and a high-quality pseudo-label generation method, which can significantly improve the detection accuracy in the target domain without pre-made annotations. Besides, to improve the crack segmentation model’s ability to extract local and global features, this article proposes a SegCrackFormer model, which embeds convolutional layers and multi-head self-attention modules. An experiment of the crack segmentation transfer learning method is performed on two open-source crack datasets, METU and Crack500, and a newly proposed LD dataset. The experimental results show that the crack segmentation transfer learning method proposed in this article can improve the mean intersection over union (mIoU) by 38.41% and 15.66% on the Crack500 and LD datasets, respectively. The proposed SegCrackFormer is evaluated through comparative experiments, which demonstrate its superiority over existing crack segmentation models on the METU dataset. Additionally, the proposed method is shown to require significantly less computational resources than other existing models, which highlights the potential of SegCrackFormer as a powerful and efficient model for crack segmentation in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LaNpln发布了新的文献求助10
1秒前
田様应助高高高采纳,获得10
1秒前
可恶地发布了新的文献求助10
1秒前
了解发布了新的文献求助10
1秒前
我是老大应助珩珩采纳,获得30
2秒前
科研通AI6应助斑鸠津采纳,获得10
2秒前
华仔应助心灵美明杰采纳,获得10
2秒前
3秒前
kyx关闭了kyx文献求助
3秒前
123发布了新的文献求助30
3秒前
3秒前
3秒前
4秒前
烤布蕾发布了新的文献求助10
4秒前
Nan语发布了新的文献求助10
4秒前
reiiia发布了新的文献求助10
4秒前
江汛完成签到,获得积分10
4秒前
4秒前
zhengjianlong完成签到,获得积分10
5秒前
5秒前
5秒前
江边拔草完成签到,获得积分20
5秒前
xy发布了新的文献求助10
5秒前
彭于晏应助海盗船长采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
可爱的函函应助YoursSummer采纳,获得10
6秒前
6秒前
美丽的又菡完成签到,获得积分10
6秒前
7秒前
小二郎应助会飞的喵采纳,获得10
7秒前
chen完成签到,获得积分10
7秒前
mukou完成签到,获得积分10
8秒前
8秒前
江汛发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
大傻子完成签到,获得积分10
10秒前
Runostp发布了新的文献求助10
10秒前
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619809
求助须知:如何正确求助?哪些是违规求助? 4704349
关于积分的说明 14927602
捐赠科研通 4760460
什么是DOI,文献DOI怎么找? 2550657
邀请新用户注册赠送积分活动 1513453
关于科研通互助平台的介绍 1474498