Automatic high-precision crack detection of post-earthquake structure based on self-supervised transfer learning method and SegCrackFormer

分割 交叉口(航空) 学习迁移 领域(数学分析) 计算机科学 模式识别(心理学) 人工智能 机器学习 工程类 数学 数学分析 航空航天工程
作者
Shiqiao Meng,Ying Zhou,Abouzar Jafari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (6): 3352-3370
标识
DOI:10.1177/14759217231225987
摘要

Accurate crack detection is essential for structural damage assessment after earthquake disasters. However, due to the gap between the target domain of the detected structure and the source domain, it is challenging to achieve high-precision crack segmentation when performing crack detection based on deep learning (DL) in actual engineering. This article proposes a crack segmentation transfer learning method based on a self-supervised learning mechanism and a high-quality pseudo-label generation method, which can significantly improve the detection accuracy in the target domain without pre-made annotations. Besides, to improve the crack segmentation model’s ability to extract local and global features, this article proposes a SegCrackFormer model, which embeds convolutional layers and multi-head self-attention modules. An experiment of the crack segmentation transfer learning method is performed on two open-source crack datasets, METU and Crack500, and a newly proposed LD dataset. The experimental results show that the crack segmentation transfer learning method proposed in this article can improve the mean intersection over union (mIoU) by 38.41% and 15.66% on the Crack500 and LD datasets, respectively. The proposed SegCrackFormer is evaluated through comparative experiments, which demonstrate its superiority over existing crack segmentation models on the METU dataset. Additionally, the proposed method is shown to require significantly less computational resources than other existing models, which highlights the potential of SegCrackFormer as a powerful and efficient model for crack segmentation in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DreamSeker完成签到 ,获得积分10
1秒前
科研通AI6应助zhuzhu的江湖采纳,获得10
1秒前
star应助务实雪珍采纳,获得10
2秒前
2秒前
3秒前
思源应助SUNYAOSUNYAO采纳,获得10
3秒前
kook发布了新的文献求助10
3秒前
Criminology34应助惠香香的采纳,获得10
4秒前
sober给sober的求助进行了留言
4秒前
4秒前
FashionBoy应助杜禹锋采纳,获得10
4秒前
Leon完成签到,获得积分10
4秒前
路宇鹏完成签到,获得积分10
5秒前
森林发布了新的文献求助10
5秒前
光亮又晴发布了新的文献求助10
5秒前
5秒前
BowieHuang应助优美紫槐采纳,获得10
5秒前
bkagyin应助花開采纳,获得10
6秒前
寜1发布了新的文献求助10
6秒前
实验室同学完成签到,获得积分10
6秒前
7秒前
7秒前
milk完成签到 ,获得积分10
8秒前
8秒前
myt发布了新的文献求助10
8秒前
FashionBoy应助钟铃棱采纳,获得10
8秒前
CipherSage应助11采纳,获得10
8秒前
勤恳新竹完成签到,获得积分10
8秒前
YJ完成签到,获得积分20
9秒前
9秒前
海边的叶子完成签到,获得积分10
9秒前
9秒前
上官若男应助超级翠采纳,获得10
10秒前
传奇3应助kyx采纳,获得10
10秒前
ccm应助落英还采纳,获得10
10秒前
10秒前
蔬菜土豆完成签到,获得积分20
10秒前
10秒前
叶子应助智慧采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836