已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic high-precision crack detection of post-earthquake structure based on self-supervised transfer learning method and SegCrackFormer

分割 交叉口(航空) 学习迁移 领域(数学分析) 计算机科学 模式识别(心理学) 人工智能 机器学习 工程类 数学 数学分析 航空航天工程
作者
Shiqiao Meng,Ying Zhou,Abouzar Jafari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (6): 3352-3370
标识
DOI:10.1177/14759217231225987
摘要

Accurate crack detection is essential for structural damage assessment after earthquake disasters. However, due to the gap between the target domain of the detected structure and the source domain, it is challenging to achieve high-precision crack segmentation when performing crack detection based on deep learning (DL) in actual engineering. This article proposes a crack segmentation transfer learning method based on a self-supervised learning mechanism and a high-quality pseudo-label generation method, which can significantly improve the detection accuracy in the target domain without pre-made annotations. Besides, to improve the crack segmentation model’s ability to extract local and global features, this article proposes a SegCrackFormer model, which embeds convolutional layers and multi-head self-attention modules. An experiment of the crack segmentation transfer learning method is performed on two open-source crack datasets, METU and Crack500, and a newly proposed LD dataset. The experimental results show that the crack segmentation transfer learning method proposed in this article can improve the mean intersection over union (mIoU) by 38.41% and 15.66% on the Crack500 and LD datasets, respectively. The proposed SegCrackFormer is evaluated through comparative experiments, which demonstrate its superiority over existing crack segmentation models on the METU dataset. Additionally, the proposed method is shown to require significantly less computational resources than other existing models, which highlights the potential of SegCrackFormer as a powerful and efficient model for crack segmentation in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ykesl发布了新的文献求助10
刚刚
rrrrrrry发布了新的文献求助10
3秒前
科研通AI2S应助LALA采纳,获得10
5秒前
传奇3应助思辰。采纳,获得10
6秒前
家欣完成签到,获得积分10
8秒前
可爱的函函应助李大白采纳,获得10
9秒前
胖胖的江鸟完成签到 ,获得积分10
9秒前
9秒前
乐乐应助Ykesl采纳,获得10
12秒前
火山应助Daniel采纳,获得30
13秒前
19秒前
23秒前
LALA发布了新的文献求助10
24秒前
古惑仔发布了新的文献求助30
25秒前
26秒前
坚强觅珍完成签到 ,获得积分10
27秒前
李大白完成签到,获得积分10
28秒前
28秒前
30秒前
MRD完成签到,获得积分10
32秒前
李大白发布了新的文献求助10
33秒前
LALA发布了新的文献求助10
35秒前
宣灵薇完成签到,获得积分0
35秒前
35秒前
36秒前
37秒前
月亮很亮完成签到,获得积分10
38秒前
冷傲曼冬发布了新的文献求助10
40秒前
13656479046发布了新的文献求助10
41秒前
rrrrrrry发布了新的文献求助20
42秒前
orixero应助尘曦采纳,获得10
42秒前
sadh2完成签到 ,获得积分10
42秒前
月亮很亮发布了新的文献求助10
44秒前
48秒前
嘿嘿应助南风知哀意采纳,获得10
48秒前
49秒前
rrrrrrry发布了新的文献求助10
53秒前
荔枝发布了新的文献求助10
54秒前
55秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595590
求助须知:如何正确求助?哪些是违规求助? 4680876
关于积分的说明 14817799
捐赠科研通 4650797
什么是DOI,文献DOI怎么找? 2535516
邀请新用户注册赠送积分活动 1503487
关于科研通互助平台的介绍 1469726