Automatic high-precision crack detection of post-earthquake structure based on self-supervised transfer learning method and SegCrackFormer

学习迁移 计算机科学 传输(计算) 人工智能 地震学 地质学 并行计算
作者
Shiqiao Meng,Ying Zhou,Abouzar Jafari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217231225987
摘要

Accurate crack detection is essential for structural damage assessment after earthquake disasters. However, due to the gap between the target domain of the detected structure and the source domain, it is challenging to achieve high-precision crack segmentation when performing crack detection based on deep learning (DL) in actual engineering. This article proposes a crack segmentation transfer learning method based on a self-supervised learning mechanism and a high-quality pseudo-label generation method, which can significantly improve the detection accuracy in the target domain without pre-made annotations. Besides, to improve the crack segmentation model’s ability to extract local and global features, this article proposes a SegCrackFormer model, which embeds convolutional layers and multi-head self-attention modules. An experiment of the crack segmentation transfer learning method is performed on two open-source crack datasets, METU and Crack500, and a newly proposed LD dataset. The experimental results show that the crack segmentation transfer learning method proposed in this article can improve the mean intersection over union (mIoU) by 38.41% and 15.66% on the Crack500 and LD datasets, respectively. The proposed SegCrackFormer is evaluated through comparative experiments, which demonstrate its superiority over existing crack segmentation models on the METU dataset. Additionally, the proposed method is shown to require significantly less computational resources than other existing models, which highlights the potential of SegCrackFormer as a powerful and efficient model for crack segmentation in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wayne完成签到,获得积分20
刚刚
2秒前
zy发布了新的文献求助10
2秒前
2秒前
霜序发布了新的文献求助10
3秒前
smottom应助Tao采纳,获得10
3秒前
十二应助slb1319采纳,获得10
5秒前
英姑应助张达采纳,获得10
6秒前
6秒前
平常的仙人掌完成签到,获得积分10
7秒前
七月流火应助zm采纳,获得100
7秒前
7秒前
大闲鱼铭一完成签到 ,获得积分10
9秒前
榴芒兔发布了新的文献求助10
9秒前
刘嘻嘻发布了新的文献求助10
11秒前
12秒前
13秒前
科研混子发布了新的文献求助10
13秒前
星辰大海应助qz采纳,获得10
15秒前
幕白okk应助超级飞侠采纳,获得10
15秒前
霜序完成签到,获得积分10
16秒前
好好学习发布了新的文献求助10
16秒前
轩轩完成签到,获得积分10
17秒前
seal发布了新的文献求助10
18秒前
暴躁的太阳完成签到,获得积分10
19秒前
20秒前
深情安青应助zy采纳,获得10
20秒前
Evelyn发布了新的文献求助10
21秒前
小吴同志发布了新的文献求助10
21秒前
Loner发布了新的文献求助10
22秒前
退而求其次完成签到,获得积分10
22秒前
李健应助面包先生采纳,获得10
22秒前
lay完成签到 ,获得积分10
23秒前
24秒前
24秒前
galioo3000完成签到,获得积分20
25秒前
好好学习完成签到,获得积分10
25秒前
噫嘘唏发布了新的文献求助10
27秒前
HBY发布了新的文献求助10
28秒前
清风完成签到 ,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511908
关于积分的说明 11160656
捐赠科研通 3246646
什么是DOI,文献DOI怎么找? 1793433
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403