已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic high-precision crack detection of post-earthquake structure based on self-supervised transfer learning method and SegCrackFormer

分割 交叉口(航空) 学习迁移 领域(数学分析) 计算机科学 模式识别(心理学) 人工智能 机器学习 工程类 数学 数学分析 航空航天工程
作者
Shiqiao Meng,Ying Zhou,Abouzar Jafari
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (6): 3352-3370
标识
DOI:10.1177/14759217231225987
摘要

Accurate crack detection is essential for structural damage assessment after earthquake disasters. However, due to the gap between the target domain of the detected structure and the source domain, it is challenging to achieve high-precision crack segmentation when performing crack detection based on deep learning (DL) in actual engineering. This article proposes a crack segmentation transfer learning method based on a self-supervised learning mechanism and a high-quality pseudo-label generation method, which can significantly improve the detection accuracy in the target domain without pre-made annotations. Besides, to improve the crack segmentation model’s ability to extract local and global features, this article proposes a SegCrackFormer model, which embeds convolutional layers and multi-head self-attention modules. An experiment of the crack segmentation transfer learning method is performed on two open-source crack datasets, METU and Crack500, and a newly proposed LD dataset. The experimental results show that the crack segmentation transfer learning method proposed in this article can improve the mean intersection over union (mIoU) by 38.41% and 15.66% on the Crack500 and LD datasets, respectively. The proposed SegCrackFormer is evaluated through comparative experiments, which demonstrate its superiority over existing crack segmentation models on the METU dataset. Additionally, the proposed method is shown to require significantly less computational resources than other existing models, which highlights the potential of SegCrackFormer as a powerful and efficient model for crack segmentation in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白白发布了新的文献求助10
刚刚
刚刚
1秒前
Zwang完成签到,获得积分10
1秒前
3秒前
xxx发布了新的文献求助10
4秒前
牢大完成签到,获得积分10
5秒前
在水一方应助科研帽采纳,获得10
5秒前
6秒前
Angela完成签到,获得积分10
6秒前
7秒前
7秒前
bean完成签到,获得积分10
8秒前
Ann完成签到 ,获得积分10
9秒前
科研通AI6应助123采纳,获得10
10秒前
兔子牙发布了新的文献求助10
10秒前
10秒前
流星泪发布了新的文献求助10
10秒前
玻璃杯发布了新的文献求助10
10秒前
白白发布了新的文献求助10
10秒前
10秒前
壑舟完成签到,获得积分10
11秒前
地形图完成签到 ,获得积分10
11秒前
12秒前
华仔应助puhong zhang采纳,获得10
14秒前
kai发布了新的文献求助10
15秒前
16秒前
JUN完成签到 ,获得积分10
17秒前
科研通AI2S应助bswxy采纳,获得10
18秒前
cccc发布了新的文献求助10
18秒前
Folium完成签到,获得积分10
18秒前
干净寻冬应助不知道呀采纳,获得10
19秒前
everglow完成签到,获得积分10
19秒前
黑桃J发布了新的文献求助10
19秒前
可爱的函函应助yun采纳,获得10
22秒前
24秒前
25秒前
25秒前
26秒前
所所应助白白采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644177
求助须知:如何正确求助?哪些是违规求助? 4763055
关于积分的说明 15023932
捐赠科研通 4802413
什么是DOI,文献DOI怎么找? 2567430
邀请新用户注册赠送积分活动 1525174
关于科研通互助平台的介绍 1484663