Texture Feature Extraction of Image Based on 2D Hilbert-Huang Transform and Multifractal Analysis

人工智能 多重分形系统 模式识别(心理学) 特征提取 计算机科学 图像纹理 纹理(宇宙学) 图像(数学) 特征(语言学) 计算机视觉 图像处理 数学 分形 数学分析 语言学 哲学
作者
Lei Yang,Feng Lu,Tiegang Zhang,Jing Chen
标识
DOI:10.1109/icicml60161.2023.10424818
摘要

Analysis and classification of texture images are significant topics in the field of computer vision. The extraction of texture features from images is mainly applied in areas of object recognition, image segmentation, and image fusion and so on. As images are considered signals, signal processing techniques can commonly be used in image analysis and processing. Traditional signals analysis methods include Fourier transform, short-time Fourier transform, wavelet transform, and others. These methods can effectively analyze stationary signals but cannot effectively analyze image signals. For non-stationary signals, the Hilbert-Huang Transform (HHT) was proposed by Norden E. Huang et al. This method enables accurate analysis of non-linear and non-stationary signals. The HHT can analyze non-stationary and nonlinear signals while interpreting their instantaneous frequency characteristics. This paper extends the theory of HHT to the two-dimensional domain and applies it to image texture analysis. 2D empirical mode decomposition (EMD) algorithm and theory of HHT are introduced first. Then 2D EMD is used to analyze image texture. Thirdly, multifractal spectrum is adopted to describe the image texture, and we give a group experiment on simple classification of natural marble texture. Experimental results show that the proposed method combines the theory of multifractal method and HHT theory to extract features from images, which provide a new way for non-stationary signal fields such as texture image processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RJ应助toxin37采纳,获得10
1秒前
1秒前
1秒前
长孙明雪完成签到,获得积分10
2秒前
优秀的邪欢完成签到 ,获得积分10
2秒前
2秒前
万圣夜完成签到,获得积分10
2秒前
3秒前
我是老大应助LHZM采纳,获得10
4秒前
4秒前
安安完成签到,获得积分10
5秒前
丝绒发布了新的文献求助10
5秒前
6秒前
CipherSage应助A健采纳,获得10
6秒前
7秒前
乐乐应助12采纳,获得10
7秒前
Hiogteng发布了新的文献求助20
8秒前
tzhzh8发布了新的文献求助20
8秒前
xiaotianli发布了新的文献求助10
8秒前
闪闪乞完成签到,获得积分10
9秒前
诺克萨斯完成签到,获得积分10
9秒前
11秒前
电池小白完成签到,获得积分10
11秒前
wenllian完成签到,获得积分10
11秒前
11秒前
BowieHuang应助乘风文月采纳,获得20
12秒前
12秒前
xucc完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
飘逸锦程完成签到 ,获得积分0
13秒前
14秒前
无花果应助SigRosa采纳,获得10
14秒前
lxy完成签到,获得积分10
14秒前
dandelion完成签到,获得积分10
14秒前
脑洞疼应助阿酒采纳,获得10
14秒前
无花果应助勤奋成风采纳,获得10
15秒前
酷波er应助丝绒采纳,获得10
15秒前
朱信姿完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476