Texture Feature Extraction of Image Based on 2D Hilbert-Huang Transform and Multifractal Analysis

人工智能 多重分形系统 模式识别(心理学) 特征提取 计算机科学 图像纹理 纹理(宇宙学) 图像(数学) 特征(语言学) 计算机视觉 图像处理 数学 分形 数学分析 语言学 哲学
作者
Lei Yang,Feng Lu,Tiegang Zhang,Jing Chen
标识
DOI:10.1109/icicml60161.2023.10424818
摘要

Analysis and classification of texture images are significant topics in the field of computer vision. The extraction of texture features from images is mainly applied in areas of object recognition, image segmentation, and image fusion and so on. As images are considered signals, signal processing techniques can commonly be used in image analysis and processing. Traditional signals analysis methods include Fourier transform, short-time Fourier transform, wavelet transform, and others. These methods can effectively analyze stationary signals but cannot effectively analyze image signals. For non-stationary signals, the Hilbert-Huang Transform (HHT) was proposed by Norden E. Huang et al. This method enables accurate analysis of non-linear and non-stationary signals. The HHT can analyze non-stationary and nonlinear signals while interpreting their instantaneous frequency characteristics. This paper extends the theory of HHT to the two-dimensional domain and applies it to image texture analysis. 2D empirical mode decomposition (EMD) algorithm and theory of HHT are introduced first. Then 2D EMD is used to analyze image texture. Thirdly, multifractal spectrum is adopted to describe the image texture, and we give a group experiment on simple classification of natural marble texture. Experimental results show that the proposed method combines the theory of multifractal method and HHT theory to extract features from images, which provide a new way for non-stationary signal fields such as texture image processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小石头发布了新的文献求助10
刚刚
小一完成签到,获得积分10
1秒前
pfshan发布了新的文献求助10
1秒前
华仔应助蔡勇强采纳,获得10
1秒前
Walden发布了新的文献求助10
2秒前
浮游应助啊飞啊飞啊飞采纳,获得10
3秒前
4秒前
zjrh发布了新的文献求助10
4秒前
郝富完成签到,获得积分10
5秒前
ericzhouxx完成签到,获得积分10
5秒前
doctor小陈完成签到,获得积分10
6秒前
倩倩发布了新的文献求助10
8秒前
受伤鸡发布了新的文献求助10
9秒前
坚果完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
jesmblaq发布了新的文献求助10
10秒前
AAngelica完成签到,获得积分10
10秒前
ElviraHuang完成签到 ,获得积分10
12秒前
12秒前
李昕123发布了新的文献求助10
14秒前
14秒前
15秒前
Canyon完成签到,获得积分10
16秒前
刘l完成签到,获得积分10
16秒前
9699完成签到,获得积分20
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
破碎时间完成签到 ,获得积分10
18秒前
18秒前
18秒前
orixero应助忐忑的不可采纳,获得10
19秒前
科研通AI2S应助zhouyan采纳,获得10
19秒前
20秒前
蔡勇强发布了新的文献求助10
20秒前
小虫虫完成签到,获得积分10
20秒前
饼饼大王完成签到,获得积分10
20秒前
13013523252完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812