CDINet: Content Distortion Interaction Network for Blind Image Quality Assessment

计算机科学 失真(音乐) 图像质量 人工智能 计算机视觉 质量(理念) 图像(数学) 计算机网络 带宽(计算) 放大器 哲学 认识论
作者
Zheng Li-min,Yu Luo,Zihan Zhou,Jie Ling,Guanghui Yue
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7089-7100 被引量:3
标识
DOI:10.1109/tmm.2024.3360697
摘要

Perceptual image quality is related to content and distortion. Distortion classification is a common way to learn distortion information. How to extract distortion information consistent with human perception is a problem to be solved. Besides, the joint effect on image quality caused by the interplay of content and distortion has not been fully studied. In this paper, a novel Content Distortion Interaction Network (CDINet) is proposed for blind image quality assessment. Distortion representation are guided by content representation to learn quality-aware representation. CDINet consists of four components: a Distortion-Aware Module (DAM), a Content-Aware Module (CAM), an Asymmetric Content-Distortion Interaction (ACDI) module, and a quality regression module. The content representation and distortion representation are extracted respectively and fused interactively in CDINet. Specifically, with the assistance of image restoration, distortion representation consistent with human perception is learned. To further improve the ability in distortion representation, the DAM is used to construct the differences between the distorted image and its reference image. The proposed ACDI module enables the interaction of content and distortion representations to occur at different levels with less computational cost. Since the proposed CDINet considers the joint impact on image quality caused by the interplay of content and distortion, the predicted image qualities highly align with human perception. Comprehensive experiments on 8 benchmark datasets demonstrate that the proposed CDINet effectively extracts quality-aware representation, achieving state-of-the-art performance in evaluating both synthetically and authentically distorted images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助雪白雍采纳,获得10
刚刚
3秒前
山橘月完成签到,获得积分10
3秒前
我是老大应助Sun采纳,获得10
3秒前
Yurole发布了新的文献求助10
3秒前
3秒前
炙热的山河完成签到,获得积分10
4秒前
taoliu完成签到,获得积分10
4秒前
火星上念梦完成签到,获得积分20
5秒前
斯文败类应助HHH采纳,获得30
5秒前
Elaine发布了新的文献求助10
6秒前
7秒前
Yurole完成签到,获得积分10
7秒前
7秒前
7秒前
SDNUDRUG完成签到,获得积分10
7秒前
知无涯者发布了新的文献求助10
8秒前
慕青应助聪慧的微笑采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
9秒前
11秒前
11秒前
mm发布了新的文献求助10
12秒前
12秒前
15秒前
15秒前
Jasper应助Elaine采纳,获得10
18秒前
酷炫的安容完成签到,获得积分10
19秒前
19秒前
带志完成签到,获得积分10
20秒前
20秒前
芸栖完成签到 ,获得积分10
20秒前
21秒前
wdy111应助小狗熊吖i采纳,获得10
23秒前
qq发布了新的文献求助10
25秒前
26秒前
超级无敌暴龙战士完成签到,获得积分10
27秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226