Parameter-insensitive Min Cut Clustering with Flexible Size Constrains

聚类分析 计算机科学 上下界 相关聚类 约束聚类 k-中位数聚类 分割 确定数据集中的群集数 增广拉格朗日法 拉格朗日乘数 变量(数学) CURE数据聚类算法 最大切割量 算法 数学 人工智能 数学优化 图形 理论计算机科学 数学分析
作者
Feiping Nie,Fangyuan Xie,Weizhong Yu,Xuelong Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (8): 5479-5492 被引量:2
标识
DOI:10.1109/tpami.2024.3367912
摘要

Clustering is a fundamental topic in machine learning and various methods are proposed, in which K-Means (KM) and min cut clustering are typical ones. However, they may produce empty or skewed clustering results, which are not as expected. In KM, the constrained clustering methods have been fully studied while in min cut clustering, it still needs to be developed. In this paper, we propose a parameter-insensitive min cut clustering with flexible size constraints. Specifically, we add lower limitations on the number of samples for each cluster, which can perfectly avoid the trivial solution in min cut clustering. As far as we are concerned, this is the first attempt of directly incorporating size constraints into min cut. However, it is a NP-hard problem and difficult to solve. Thus, the upper limits is also added in but it is still difficult to solve. Therefore, an additional variable that is equivalent to label matrix is introduced in and the augmented Lagrangian multiplier (ALM) is used to decouple the constraints. In the experiments, we find that the our algorithm is less sensitive to lower bound and is practical in image segmentation. A large number of experiments demonstrate the effectiveness of our proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微风完成签到,获得积分10
2秒前
李畅完成签到,获得积分20
2秒前
jc哥发布了新的文献求助10
4秒前
小小K发布了新的文献求助10
5秒前
Theo完成签到,获得积分10
6秒前
洁净马里奥完成签到,获得积分20
8秒前
木质卷饼完成签到 ,获得积分10
8秒前
fengfeng完成签到,获得积分10
8秒前
xc应助执着的弱采纳,获得30
10秒前
10秒前
丘比特应助PG采纳,获得10
10秒前
11秒前
李畅发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
17秒前
lxwwwxl发布了新的文献求助10
20秒前
田様应助脑三问采纳,获得10
20秒前
FartKing发布了新的文献求助10
20秒前
allen完成签到,获得积分10
21秒前
xcz完成签到,获得积分10
21秒前
落骛发布了新的文献求助10
22秒前
Jenna完成签到 ,获得积分10
23秒前
24秒前
爆米花应助FartKing采纳,获得30
28秒前
一叶知秋应助科研通管家采纳,获得10
28秒前
我是老大应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得10
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
宅多点应助科研通管家采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得10
28秒前
lisi应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560070
求助须知:如何正确求助?哪些是违规求助? 4645240
关于积分的说明 14674548
捐赠科研通 4586369
什么是DOI,文献DOI怎么找? 2516380
邀请新用户注册赠送积分活动 1490038
关于科研通互助平台的介绍 1460866