Parameter-insensitive Min Cut Clustering with Flexible Size Constrains

聚类分析 计算机科学 上下界 相关聚类 约束聚类 k-中位数聚类 分割 确定数据集中的群集数 增广拉格朗日法 拉格朗日乘数 变量(数学) CURE数据聚类算法 最大切割量 算法 数学 人工智能 数学优化 图形 理论计算机科学 数学分析
作者
Feiping Nie,Fangyuan Xie,Weizhong Yu,Xuelong Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (8): 5479-5492 被引量:2
标识
DOI:10.1109/tpami.2024.3367912
摘要

Clustering is a fundamental topic in machine learning and various methods are proposed, in which K-Means (KM) and min cut clustering are typical ones. However, they may produce empty or skewed clustering results, which are not as expected. In KM, the constrained clustering methods have been fully studied while in min cut clustering, it still needs to be developed. In this paper, we propose a parameter-insensitive min cut clustering with flexible size constraints. Specifically, we add lower limitations on the number of samples for each cluster, which can perfectly avoid the trivial solution in min cut clustering. As far as we are concerned, this is the first attempt of directly incorporating size constraints into min cut. However, it is a NP-hard problem and difficult to solve. Thus, the upper limits is also added in but it is still difficult to solve. Therefore, an additional variable that is equivalent to label matrix is introduced in and the augmented Lagrangian multiplier (ALM) is used to decouple the constraints. In the experiments, we find that the our algorithm is less sensitive to lower bound and is practical in image segmentation. A large number of experiments demonstrate the effectiveness of our proposed algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文瑶琪完成签到,获得积分10
1秒前
Quhang发布了新的文献求助10
1秒前
top发布了新的文献求助10
2秒前
2秒前
2秒前
Sebastian完成签到,获得积分10
2秒前
浩二完成签到,获得积分10
2秒前
77发布了新的文献求助10
3秒前
3秒前
3秒前
清脆的傲旋完成签到,获得积分10
3秒前
小送完成签到,获得积分10
4秒前
hejilianglove发布了新的文献求助10
4秒前
温暖静柏完成签到,获得积分20
4秒前
4秒前
蔡徐坤完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
李爱国应助金锐采纳,获得10
6秒前
领导范儿应助繁荣的觅儿采纳,获得10
6秒前
自然的峰单关注了科研通微信公众号
6秒前
浮游应助飘逸的太阳采纳,获得10
6秒前
7秒前
枕安完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
ziyanga发布了新的文献求助10
7秒前
刘大能完成签到,获得积分10
8秒前
zy完成签到,获得积分10
8秒前
乐乐应助牧野牧采纳,获得10
8秒前
8秒前
Stella应助好运莲莲莲采纳,获得10
9秒前
丘比特应助Ccccc采纳,获得10
9秒前
斯文飞雪发布了新的文献求助10
9秒前
科目三应助陶醉眼睛采纳,获得10
9秒前
缓慢的高山应助方宇典采纳,获得10
9秒前
文6发布了新的文献求助10
10秒前
genomed完成签到,获得积分0
11秒前
11秒前
Sunshine发布了新的文献求助10
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671