Incremental learning with multi-fidelity information fusion for digital twin-driven bearing fault diagnosis

计算机科学 信息融合 方位(导航) 断层(地质) 高保真 人工智能 融合 忠诚 机器学习 电信 语言学 哲学 工程类 地震学 电气工程 地质学
作者
Xufeng Huang,Tingli Xie,Shuyang Luo,Jinhong Wu,Rongmin Luo,Qi Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108212-108212 被引量:2
标识
DOI:10.1016/j.engappai.2024.108212
摘要

Digital twin (DT)-driven intelligent fault diagnosis (IFD) has been a hot topic, which can support personalized monitoring of critical machinery. A central challenge is that diagnostic models using deep learning (DL) suffer from the problem of catastrophic forgetting if personalized faults occur in dynamic environments. To deal with this issue, this article presents a class-incremental learning method with multi-fidelity information fusion (MFIF-CIL) for the continuous diagnosis of key faults in rolling bearings. First, an effective bearing DT model is constructed to generate enough low-fidelity (LF) simulation data. Second, feature boosting is developed to fit the residuals with distribution drifts between old classes and new classes, which helps prevent the problem of catastrophic forgetting. Last, the MFIF module is proposed for multi-fidelity knowledge transfer and fusion to leverage LF simulation data to improve the class-incremental learning ability of feature boosting with limited high-fidelity (HF) physical data. The testing datasets consisting of the measured signals are utilized as testing datasets of optimal incremental neural networks for fault diagnosis. The proposed MFIF-CIL-1 (using 15 HF data and 100 LF data as exemplars) and MFIF-CIL-2 (using 20 HF data and 100 LF data as exemplars) obtain the average diagnostic accuracies of 96.87% and 98.10%, respectively. The MFIF-CIL-2 only uses 41.93% of the training time required by the joint training method. These satisfying results demonstrate that the MFIF-CIL can effectively diagnose different health conditions over time and provide a tradeoff between relatively low experimental costs and high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
动人的雨莲完成签到,获得积分10
3秒前
叮叮发布了新的文献求助30
3秒前
4秒前
玛珂巴巴珂完成签到,获得积分10
5秒前
张张完成签到,获得积分10
5秒前
Rrrrr_y发布了新的文献求助10
6秒前
西扬完成签到 ,获得积分10
7秒前
现代书雪发布了新的文献求助10
8秒前
领导范儿应助wancheng_采纳,获得10
10秒前
13秒前
aaaaal完成签到,获得积分20
14秒前
oyasimi发布了新的文献求助10
15秒前
NexusExplorer应助冷静乌采纳,获得10
16秒前
aaaaal发布了新的文献求助10
18秒前
聂裕铭完成签到 ,获得积分10
21秒前
22秒前
kk完成签到,获得积分10
23秒前
wancheng_发布了新的文献求助20
23秒前
28秒前
30秒前
31秒前
31秒前
32秒前
33秒前
冷静乌发布了新的文献求助10
34秒前
苗条的听寒完成签到,获得积分10
36秒前
36秒前
vanshaw.vs发布了新的文献求助10
37秒前
活力安南完成签到,获得积分10
37秒前
wancheng_发布了新的文献求助10
37秒前
脑洞疼应助renhu采纳,获得10
38秒前
研友_Z72Ydn发布了新的文献求助10
39秒前
CipherSage应助水星采纳,获得10
40秒前
40秒前
柒柒发布了新的文献求助30
41秒前
SciEngineerX完成签到,获得积分10
42秒前
XSB完成签到,获得积分10
42秒前
紫愿完成签到 ,获得积分10
44秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816611
关于积分的说明 7913235
捐赠科研通 2476117
什么是DOI,文献DOI怎么找? 1318699
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388