Incremental learning with multi-fidelity information fusion for digital twin-driven bearing fault diagnosis

计算机科学 信息融合 方位(导航) 断层(地质) 高保真 人工智能 融合 忠诚 机器学习 电信 语言学 哲学 工程类 地震学 电气工程 地质学
作者
Xufeng Huang,Tingli Xie,Shuyang Luo,Jinhong Wu,Rongmin Luo,Qi Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108212-108212 被引量:12
标识
DOI:10.1016/j.engappai.2024.108212
摘要

Digital twin (DT)-driven intelligent fault diagnosis (IFD) has been a hot topic, which can support personalized monitoring of critical machinery. A central challenge is that diagnostic models using deep learning (DL) suffer from the problem of catastrophic forgetting if personalized faults occur in dynamic environments. To deal with this issue, this article presents a class-incremental learning method with multi-fidelity information fusion (MFIF-CIL) for the continuous diagnosis of key faults in rolling bearings. First, an effective bearing DT model is constructed to generate enough low-fidelity (LF) simulation data. Second, feature boosting is developed to fit the residuals with distribution drifts between old classes and new classes, which helps prevent the problem of catastrophic forgetting. Last, the MFIF module is proposed for multi-fidelity knowledge transfer and fusion to leverage LF simulation data to improve the class-incremental learning ability of feature boosting with limited high-fidelity (HF) physical data. The testing datasets consisting of the measured signals are utilized as testing datasets of optimal incremental neural networks for fault diagnosis. The proposed MFIF-CIL-1 (using 15 HF data and 100 LF data as exemplars) and MFIF-CIL-2 (using 20 HF data and 100 LF data as exemplars) obtain the average diagnostic accuracies of 96.87% and 98.10%, respectively. The MFIF-CIL-2 only uses 41.93% of the training time required by the joint training method. These satisfying results demonstrate that the MFIF-CIL can effectively diagnose different health conditions over time and provide a tradeoff between relatively low experimental costs and high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
刚刚
刚刚
脑洞疼应助忆枫采纳,获得10
刚刚
lufei发布了新的文献求助10
1秒前
俭朴依白完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
肖木木完成签到,获得积分10
3秒前
斯文败类应助光之美少女采纳,获得10
3秒前
啊哈哈哈哈哈哈完成签到,获得积分10
3秒前
晨屿完成签到,获得积分10
3秒前
3秒前
yu发布了新的文献求助10
4秒前
Ace关闭了Ace文献求助
4秒前
wsz关注了科研通微信公众号
4秒前
4秒前
4秒前
5秒前
西伯侯完成签到,获得积分10
5秒前
6秒前
丘比特应助zyyyyyy采纳,获得10
6秒前
6秒前
肖木木发布了新的文献求助10
6秒前
潘嘉慧发布了新的文献求助10
7秒前
包子发布了新的文献求助10
7秒前
orixero应助瑞瑞采纳,获得10
7秒前
金22发布了新的文献求助10
8秒前
酷波er应助PanCiro采纳,获得10
8秒前
8秒前
rabbitbeibei完成签到,获得积分10
8秒前
噢锦完成签到,获得积分10
8秒前
活泼纲发布了新的文献求助10
8秒前
天天快乐应助bjr采纳,获得10
8秒前
liuliu发布了新的文献求助10
8秒前
rainhowk完成签到,获得积分10
9秒前
YellowStar发布了新的文献求助10
9秒前
Zoe发布了新的文献求助10
10秒前
10秒前
duoduo发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970394
求助须知:如何正确求助?哪些是违规求助? 3515139
关于积分的说明 11177107
捐赠科研通 3250335
什么是DOI,文献DOI怎么找? 1795254
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805054