Reconstruction of Adaptive Leaky Integrate-and-Fire Neuron to Enhance the Spiking Neural Networks Performance by Establishing Complex Dynamics

尖峰神经网络 计算机科学 神经形态工程学 人工智能 过度拟合 人工神经网络 模式识别(心理学)
作者
Quan Liu,Mincheng Cai,Kun Chen,Qingsong Ai,Li Ma
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2619-2633 被引量:1
标识
DOI:10.1109/tnnls.2023.3336690
摘要

Since digital spiking signals can carry rich information and propagate with low computational consumption, spiking neural networks (SNNs) have received great attention from neuroscientists and are regarded as the future development object of neural networks. However, generating the appropriate spiking signals remains challenging, which is related to the dynamics property of neurons. Most existing studies imitate the biological neurons based on the correlation of synaptic input and output, but these models have only one time constant, thus ignoring the structural differentiation and versatility in biological neurons. In this article, we propose the reconstruction of adaptive leaky integrate-and-fire (R-ALIF) neuron to perform complex behaviors similar to real neurons. First, a synaptic cleft time constant is introduced into the membrane voltage charging equation to distinguish the leakage degree between the neuron membrane and the synaptic cleft, which can expand the representation space of spiking neurons to facilitate SNNs to obtain better information expression way. Second, R-ALIF constructs a voltage threshold adjustment equation to balance the firing rate of output signals. Third, three time constants are transformed into learnable parameters, enabling the adaptive adjustment of dynamics equation and enhancing the information expression ability of SNNs. Fourth, the computational graph of R-ALIF is optimized to improve the performance of SNNs. Moreover, we adopt a temporal dropout (TemDrop) method to solve the overfitting problem in SNNs and propose a data augmentation method for neuromorphic datasets. Finally, we evaluate our method on CIFAR10-DVS, ASL-DVS, and CIFAR-100, and achieve top1 accuracy of $81.0\%$ , $99.8\%$ , and $67.83\%$ , respectively, with few time steps. We believe that our method will further promote the development of SNNs trained by spatiotemporal backpropagation (STBP).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清脆的萍完成签到 ,获得积分10
1秒前
lynn发布了新的文献求助10
1秒前
毕之完成签到,获得积分10
1秒前
han应助义气妙之采纳,获得10
1秒前
杳鸢应助义气妙之采纳,获得10
1秒前
领导范儿应助w.h采纳,获得10
2秒前
吴嘉轩完成签到,获得积分10
2秒前
Jasper应助ch采纳,获得10
2秒前
852应助阳哥采纳,获得10
2秒前
3秒前
雪白乐萱发布了新的文献求助30
3秒前
elle完成签到,获得积分10
3秒前
bkagyin应助小幻螺采纳,获得10
6秒前
ljn发布了新的文献求助10
6秒前
6秒前
6秒前
赘婿应助干净的秋柳采纳,获得10
7秒前
笨笨三问完成签到,获得积分10
7秒前
体贴的洋葱完成签到,获得积分10
8秒前
科研通AI5应助啊哒吸哇采纳,获得10
8秒前
单建安发布了新的文献求助10
8秒前
uu发布了新的文献求助10
9秒前
10秒前
小王同学完成签到,获得积分10
11秒前
11秒前
11秒前
SciGPT应助小丸子采纳,获得10
11秒前
11秒前
一一完成签到 ,获得积分10
11秒前
12秒前
科研通AI5应助体贴的洋葱采纳,获得10
12秒前
寂寞剑仙发布了新的文献求助10
12秒前
12秒前
esyncoms发布了新的文献求助10
13秒前
NexusExplorer应助罗沫沫采纳,获得10
13秒前
13秒前
13秒前
14秒前
ding应助星星采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515227
求助须知:如何正确求助?哪些是违规求助? 3097638
关于积分的说明 9236245
捐赠科研通 2792536
什么是DOI,文献DOI怎么找? 1532575
邀请新用户注册赠送积分活动 712185
科研通“疑难数据库(出版商)”最低求助积分说明 707160