Diversify: A General Framework for Time Series Out-of-Distribution Detection and Generalization

一般化 系列(地层学) 计算机科学 人工智能 机器学习 算法 数学 数学分析 古生物学 生物
作者
Lu Wang,Jindong Wang,Xinwei Sun,Yiqiang Chen,Xiangyang Ji,Qiang Yang,Xing Xie
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (6): 4534-4550 被引量:2
标识
DOI:10.1109/tpami.2024.3355212
摘要

Time series remains one of the most challenging modalities in machine learning research. Out-of-distribution (OOD) detection and generalization on time series often face difficulties due to their non-stationary nature, wherein the distribution changes over time. The dynamic distributions within time series present significant challenges for existing algorithms, especially in identifying invariant distributions, as most focus on scenarios where domain information is provided as prior knowledge. This paper aims to address the issues induced by non-stationarity in time series through the exploration of subdomains within a complete dataset for generalized representation learning. We propose Diversify , a general framework, for OOD detection and generalization on dynamic distributions of time series. Diversify operates through an iterative process: first identifying the 'worst-case' latent distribution scenario, then working to minimize the gaps between these latent distributions. We implement Diversify by combining existing OOD detection methods according to either extracted features or outputs of models for detection while we also directly utilize outputs for classification. Theoretical insights support the framework's validity. Extensive experiments are conducted on seven datasets with different OOD settings across gesture recognition, speech commands recognition, wearable stress and affect detection, and sensor-based human activity recognition. Qualitative and quantitative results demonstrate that Diversify learns more generalized features and significantly outperforms other baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
Twonej应助科研通管家采纳,获得30
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Gryphon应助科研通管家采纳,获得10
1秒前
nuaa_shy应助科研通管家采纳,获得10
1秒前
Twonej应助科研通管家采纳,获得30
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
wangzian完成签到 ,获得积分10
2秒前
痞子毛应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
水1111完成签到,获得积分10
2秒前
2秒前
cc应助科研通管家采纳,获得10
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
飘逸的城发布了新的文献求助10
3秒前
哈基米发布了新的文献求助50
3秒前
苗条的子默完成签到,获得积分20
3秒前
4秒前
wanci应助橙色的小火山采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
xyyt发布了新的文献求助10
8秒前
coco234完成签到,获得积分10
9秒前
蓝天发布了新的文献求助10
9秒前
高高高完成签到 ,获得积分10
10秒前
10秒前
12秒前
scfsl完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679656
求助须知:如何正确求助?哪些是违规求助? 4992557
关于积分的说明 15170404
捐赠科研通 4839503
什么是DOI,文献DOI怎么找? 2593348
邀请新用户注册赠送积分活动 1546505
关于科研通互助平台的介绍 1504594