Diversify: A General Framework for Time Series Out-of-Distribution Detection and Generalization

一般化 系列(地层学) 计算机科学 人工智能 机器学习 算法 数学 数学分析 古生物学 生物
作者
Lu Wang,Jindong Wang,Xinwei Sun,Yiqiang Chen,Xiangyang Ji,Qiang Yang,Xing Xie
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (6): 4534-4550 被引量:2
标识
DOI:10.1109/tpami.2024.3355212
摘要

Time series remains one of the most challenging modalities in machine learning research. Out-of-distribution (OOD) detection and generalization on time series often face difficulties due to their non-stationary nature, wherein the distribution changes over time. The dynamic distributions within time series present significant challenges for existing algorithms, especially in identifying invariant distributions, as most focus on scenarios where domain information is provided as prior knowledge. This paper aims to address the issues induced by non-stationarity in time series through the exploration of subdomains within a complete dataset for generalized representation learning. We propose Diversify , a general framework, for OOD detection and generalization on dynamic distributions of time series. Diversify operates through an iterative process: first identifying the 'worst-case' latent distribution scenario, then working to minimize the gaps between these latent distributions. We implement Diversify by combining existing OOD detection methods according to either extracted features or outputs of models for detection while we also directly utilize outputs for classification. Theoretical insights support the framework's validity. Extensive experiments are conducted on seven datasets with different OOD settings across gesture recognition, speech commands recognition, wearable stress and affect detection, and sensor-based human activity recognition. Qualitative and quantitative results demonstrate that Diversify learns more generalized features and significantly outperforms other baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助aiming采纳,获得10
1秒前
无奈傲菡完成签到,获得积分10
2秒前
TT发布了新的文献求助10
2秒前
啦啦啦发布了新的文献求助10
3秒前
sun发布了新的文献求助10
4秒前
荣荣完成签到,获得积分10
4秒前
5秒前
小安完成签到,获得积分10
6秒前
Spencer完成签到 ,获得积分10
6秒前
PengHu完成签到,获得积分10
7秒前
7秒前
9秒前
11秒前
11秒前
11秒前
ywang发布了新的文献求助10
12秒前
失眠虔纹完成签到,获得积分10
12秒前
斯文败类应助nextconnie采纳,获得10
12秒前
药学牛马发布了新的文献求助10
16秒前
16秒前
17秒前
20秒前
张无缺完成签到,获得积分10
23秒前
25秒前
CodeCraft应助MES采纳,获得10
26秒前
笨笨乘风完成签到,获得积分10
27秒前
田様应助axunQAQ采纳,获得10
29秒前
完美秋烟发布了新的文献求助10
29秒前
无花果应助糊涂的小伙采纳,获得10
29秒前
白betty完成签到,获得积分10
29秒前
MQ&FF完成签到,获得积分0
30秒前
啦啦啦完成签到,获得积分10
31秒前
32秒前
33秒前
英俊的铭应助小安采纳,获得10
34秒前
35秒前
sun完成签到,获得积分10
35秒前
耍酷的夏云应助勤劳落雁采纳,获得10
37秒前
37秒前
ywang发布了新的文献求助10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849