Attention gate and dilation U-shaped network (GDUNet): an efficient breast ultrasound image segmentation network with multiscale information extraction

计算机科学 分割 人工智能 乳腺超声检查 乳腺癌 模式识别(心理学) 深度学习 图像分割 编码器 计算机视觉 乳腺摄影术 医学 癌症 操作系统 内科学
作者
Jiadong Chen,Xiaoyan Shen,Yu Zhao,Wei Qian,He Ma,Liang Sang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:14 (2): 2034-2048
标识
DOI:10.21037/qims-23-947
摘要

Background: In recent years, computer-aided diagnosis (CAD) systems have played an important role in breast cancer screening and diagnosis. The image segmentation task is the key step in a CAD system for the rapid identification of lesions. Therefore, an efficient breast image segmentation network is necessary for improving the diagnostic accuracy in breast cancer screening. However, due to the characteristics of blurred boundaries, low contrast, and speckle noise in breast ultrasound images, breast lesion segmentation is challenging. In addition, many of the proposed breast tumor segmentation networks are too complex to be applied in practice. Methods: We developed the attention gate and dilation U-shaped network (GDUNet), a lightweight, breast lesion segmentation model. This model improves the inverted bottleneck, integrating it with tokenized multilayer perceptron (MLP) to construct the encoder. Additionally, we introduce the lightweight attention gate (AG) within the skip connection, which effectively filters noise in low-level semantic information across spatial and channel dimensions, thus attenuating irrelevant features. To further improve performance, we innovated the AG dilation (AGDT) block and embedded it between the encoder and decoder in order to capture critical multiscale contextual information. Results: We conducted experiments on two breast cancer datasets. The experiment’s results show that compared to UNet, GDUNet could reduce the number of parameters by 10 times and the computational complexity by 58 times while providing a double of the inference speed. Moreover, the GDUNet achieved a better segmentation performance than did the state-of-the-art medical image segmentation architecture. Conclusions: Our proposed GDUNet method can achieve advanced segmentation performance on different breast ultrasound image datasets with high efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chatgpt发布了新的文献求助10
1秒前
顺心醉柳完成签到 ,获得积分10
1秒前
广州南完成签到 ,获得积分10
2秒前
2秒前
幽默的煎饼完成签到,获得积分10
3秒前
林西雨完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
MM发布了新的文献求助30
4秒前
4秒前
冰雪痕完成签到 ,获得积分10
5秒前
兰海凤发布了新的文献求助10
5秒前
zhendezy完成签到,获得积分10
6秒前
紫枫完成签到,获得积分10
7秒前
自信的紫槐完成签到 ,获得积分10
8秒前
LBJ完成签到,获得积分10
9秒前
研友_VZG7GZ应助喜乐采纳,获得10
11秒前
FJ完成签到,获得积分10
11秒前
茶辞完成签到,获得积分10
13秒前
无私的蛋挞完成签到,获得积分10
14秒前
Nuyoah完成签到 ,获得积分10
14秒前
Chatgpt完成签到,获得积分10
15秒前
碧蓝的紫槐完成签到,获得积分10
16秒前
邹佳林完成签到,获得积分10
17秒前
甜蜜耳机完成签到 ,获得积分10
17秒前
山城的酒完成签到,获得积分10
17秒前
lab发布了新的文献求助10
18秒前
江苏大猩猩完成签到,获得积分20
18秒前
垃圾制造者完成签到,获得积分10
20秒前
21秒前
23秒前
Zerolii发布了新的文献求助10
23秒前
23秒前
24秒前
花生四烯酸完成签到 ,获得积分10
25秒前
26秒前
27秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
zzzq完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418797
求助须知:如何正确求助?哪些是违规求助? 4534433
关于积分的说明 14143995
捐赠科研通 4450685
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433045
关于科研通互助平台的介绍 1410502