亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention gate and dilation U-shaped network (GDUNet): an efficient breast ultrasound image segmentation network with multiscale information extraction

计算机科学 分割 人工智能 乳腺超声检查 乳腺癌 模式识别(心理学) 深度学习 图像分割 编码器 计算机视觉 乳腺摄影术 医学 癌症 操作系统 内科学
作者
Jiadong Chen,Xiaoyan Shen,Yu Zhao,Wei Qian,He Ma,Liang Sang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:14 (2): 2034-2048
标识
DOI:10.21037/qims-23-947
摘要

Background: In recent years, computer-aided diagnosis (CAD) systems have played an important role in breast cancer screening and diagnosis. The image segmentation task is the key step in a CAD system for the rapid identification of lesions. Therefore, an efficient breast image segmentation network is necessary for improving the diagnostic accuracy in breast cancer screening. However, due to the characteristics of blurred boundaries, low contrast, and speckle noise in breast ultrasound images, breast lesion segmentation is challenging. In addition, many of the proposed breast tumor segmentation networks are too complex to be applied in practice. Methods: We developed the attention gate and dilation U-shaped network (GDUNet), a lightweight, breast lesion segmentation model. This model improves the inverted bottleneck, integrating it with tokenized multilayer perceptron (MLP) to construct the encoder. Additionally, we introduce the lightweight attention gate (AG) within the skip connection, which effectively filters noise in low-level semantic information across spatial and channel dimensions, thus attenuating irrelevant features. To further improve performance, we innovated the AG dilation (AGDT) block and embedded it between the encoder and decoder in order to capture critical multiscale contextual information. Results: We conducted experiments on two breast cancer datasets. The experiment’s results show that compared to UNet, GDUNet could reduce the number of parameters by 10 times and the computational complexity by 58 times while providing a double of the inference speed. Moreover, the GDUNet achieved a better segmentation performance than did the state-of-the-art medical image segmentation architecture. Conclusions: Our proposed GDUNet method can achieve advanced segmentation performance on different breast ultrasound image datasets with high efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心的不二完成签到 ,获得积分10
4秒前
7秒前
羽生结弦的馨馨完成签到,获得积分10
7秒前
记录者完成签到 ,获得积分10
12秒前
3469907229完成签到 ,获得积分10
15秒前
Costing完成签到 ,获得积分10
17秒前
123完成签到 ,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
上官若男应助Alex采纳,获得30
22秒前
直率铁身完成签到,获得积分10
24秒前
25秒前
小二郎应助积极老黑采纳,获得10
25秒前
27秒前
何茂郎发布了新的文献求助10
30秒前
tanhaowen发布了新的文献求助10
31秒前
32秒前
36秒前
小张完成签到 ,获得积分10
37秒前
Alex发布了新的文献求助30
39秒前
cc0514gr完成签到,获得积分10
40秒前
40秒前
罗洛乐发布了新的文献求助10
42秒前
思源应助安静的沛山采纳,获得10
44秒前
wenyiboy完成签到 ,获得积分10
47秒前
Alex完成签到,获得积分10
50秒前
俏皮马里奥完成签到 ,获得积分10
53秒前
55秒前
沙沙完成签到 ,获得积分10
56秒前
57秒前
牧沛凝发布了新的文献求助50
1分钟前
1分钟前
1分钟前
程程程程完成签到,获得积分10
1分钟前
1分钟前
罗洛乐完成签到,获得积分10
1分钟前
cc123完成签到,获得积分10
1分钟前
lixiaolu完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316864
求助须知:如何正确求助?哪些是违规求助? 2948681
关于积分的说明 8541715
捐赠科研通 2624564
什么是DOI,文献DOI怎么找? 1436318
科研通“疑难数据库(出版商)”最低求助积分说明 665845
邀请新用户注册赠送积分活动 651792