Attention gate and dilation U-shaped network (GDUNet): an efficient breast ultrasound image segmentation network with multiscale information extraction

计算机科学 分割 人工智能 乳腺超声检查 乳腺癌 模式识别(心理学) 深度学习 图像分割 编码器 计算机视觉 乳腺摄影术 医学 癌症 操作系统 内科学
作者
Jiadong Chen,Xiaoyan Shen,Yu Zhao,Wei Qian,He Ma,Liang Sang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:14 (2): 2034-2048
标识
DOI:10.21037/qims-23-947
摘要

Background: In recent years, computer-aided diagnosis (CAD) systems have played an important role in breast cancer screening and diagnosis. The image segmentation task is the key step in a CAD system for the rapid identification of lesions. Therefore, an efficient breast image segmentation network is necessary for improving the diagnostic accuracy in breast cancer screening. However, due to the characteristics of blurred boundaries, low contrast, and speckle noise in breast ultrasound images, breast lesion segmentation is challenging. In addition, many of the proposed breast tumor segmentation networks are too complex to be applied in practice. Methods: We developed the attention gate and dilation U-shaped network (GDUNet), a lightweight, breast lesion segmentation model. This model improves the inverted bottleneck, integrating it with tokenized multilayer perceptron (MLP) to construct the encoder. Additionally, we introduce the lightweight attention gate (AG) within the skip connection, which effectively filters noise in low-level semantic information across spatial and channel dimensions, thus attenuating irrelevant features. To further improve performance, we innovated the AG dilation (AGDT) block and embedded it between the encoder and decoder in order to capture critical multiscale contextual information. Results: We conducted experiments on two breast cancer datasets. The experiment’s results show that compared to UNet, GDUNet could reduce the number of parameters by 10 times and the computational complexity by 58 times while providing a double of the inference speed. Moreover, the GDUNet achieved a better segmentation performance than did the state-of-the-art medical image segmentation architecture. Conclusions: Our proposed GDUNet method can achieve advanced segmentation performance on different breast ultrasound image datasets with high efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
胖Q完成签到 ,获得积分20
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
liciky完成签到 ,获得积分10
4秒前
潘健康发布了新的文献求助10
4秒前
复杂的乐蕊完成签到,获得积分10
4秒前
Dave发布了新的文献求助10
4秒前
林一发布了新的文献求助10
6秒前
今后应助积极的老鼠采纳,获得10
6秒前
彭于晏应助yuhan采纳,获得10
6秒前
sin3xas4sin3x完成签到,获得积分10
7秒前
8秒前
上官若男应助Rosemary采纳,获得10
8秒前
Lim1819完成签到 ,获得积分10
9秒前
脑洞疼应助小胡爱科研采纳,获得10
9秒前
lin发布了新的文献求助20
10秒前
10秒前
13秒前
13秒前
Hibiscus95发布了新的文献求助10
15秒前
15秒前
zy177发布了新的文献求助10
16秒前
16秒前
AN应助小明采纳,获得10
17秒前
Elan完成签到 ,获得积分10
18秒前
xxxx发布了新的文献求助30
18秒前
77发布了新的文献求助10
20秒前
yuhan发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
林一完成签到,获得积分10
23秒前
酷波er应助zy177采纳,获得10
23秒前
23秒前
彭于晏应助陈惠123采纳,获得10
24秒前
leiwenyulan发布了新的文献求助10
25秒前
monica完成签到 ,获得积分10
25秒前
香蕉觅云应助lshl2000采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879