Attention gate and dilation U-shaped network (GDUNet): an efficient breast ultrasound image segmentation network with multiscale information extraction

计算机科学 分割 人工智能 乳腺超声检查 乳腺癌 模式识别(心理学) 深度学习 图像分割 编码器 计算机视觉 乳腺摄影术 医学 癌症 操作系统 内科学
作者
Jiadong Chen,Xiaoyan Shen,Yu Zhao,Wei Qian,He Ma,Liang Sang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:14 (2): 2034-2048
标识
DOI:10.21037/qims-23-947
摘要

Background: In recent years, computer-aided diagnosis (CAD) systems have played an important role in breast cancer screening and diagnosis. The image segmentation task is the key step in a CAD system for the rapid identification of lesions. Therefore, an efficient breast image segmentation network is necessary for improving the diagnostic accuracy in breast cancer screening. However, due to the characteristics of blurred boundaries, low contrast, and speckle noise in breast ultrasound images, breast lesion segmentation is challenging. In addition, many of the proposed breast tumor segmentation networks are too complex to be applied in practice. Methods: We developed the attention gate and dilation U-shaped network (GDUNet), a lightweight, breast lesion segmentation model. This model improves the inverted bottleneck, integrating it with tokenized multilayer perceptron (MLP) to construct the encoder. Additionally, we introduce the lightweight attention gate (AG) within the skip connection, which effectively filters noise in low-level semantic information across spatial and channel dimensions, thus attenuating irrelevant features. To further improve performance, we innovated the AG dilation (AGDT) block and embedded it between the encoder and decoder in order to capture critical multiscale contextual information. Results: We conducted experiments on two breast cancer datasets. The experiment’s results show that compared to UNet, GDUNet could reduce the number of parameters by 10 times and the computational complexity by 58 times while providing a double of the inference speed. Moreover, the GDUNet achieved a better segmentation performance than did the state-of-the-art medical image segmentation architecture. Conclusions: Our proposed GDUNet method can achieve advanced segmentation performance on different breast ultrasound image datasets with high efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan1226完成签到,获得积分10
刚刚
学习学个P发布了新的文献求助30
刚刚
顾矜应助Re采纳,获得10
1秒前
王小冉发布了新的文献求助10
1秒前
依然完成签到,获得积分10
1秒前
1秒前
2秒前
000发布了新的文献求助10
2秒前
bluesky发布了新的文献求助10
2秒前
孙朱珠发布了新的文献求助10
3秒前
归尘发布了新的文献求助10
3秒前
隐形曼青应助爱听歌时光采纳,获得10
3秒前
桃李不言完成签到,获得积分10
3秒前
3秒前
4秒前
张琳完成签到,获得积分10
5秒前
5秒前
guoguo发布了新的文献求助10
5秒前
6秒前
灵巧的雁易完成签到,获得积分10
6秒前
badercao完成签到,获得积分10
6秒前
Wuwuwu发布了新的文献求助10
6秒前
Re完成签到,获得积分10
6秒前
6秒前
老鱼娜娜完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
归尘发布了新的文献求助20
8秒前
行毅文完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助凶狠的蓉采纳,获得10
8秒前
RNNNLL发布了新的文献求助10
9秒前
zhfliang完成签到,获得积分10
9秒前
乐乐妈完成签到,获得积分10
9秒前
9秒前
9秒前
帅气蓝发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572