Attention gate and dilation U-shaped network (GDUNet): an efficient breast ultrasound image segmentation network with multiscale information extraction

计算机科学 分割 人工智能 乳腺超声检查 乳腺癌 模式识别(心理学) 深度学习 图像分割 编码器 计算机视觉 乳腺摄影术 医学 癌症 操作系统 内科学
作者
Jiadong Chen,Xiaoyan Shen,Yu Zhao,Wei Qian,He Ma,Liang Sang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:14 (2): 2034-2048
标识
DOI:10.21037/qims-23-947
摘要

Background: In recent years, computer-aided diagnosis (CAD) systems have played an important role in breast cancer screening and diagnosis. The image segmentation task is the key step in a CAD system for the rapid identification of lesions. Therefore, an efficient breast image segmentation network is necessary for improving the diagnostic accuracy in breast cancer screening. However, due to the characteristics of blurred boundaries, low contrast, and speckle noise in breast ultrasound images, breast lesion segmentation is challenging. In addition, many of the proposed breast tumor segmentation networks are too complex to be applied in practice. Methods: We developed the attention gate and dilation U-shaped network (GDUNet), a lightweight, breast lesion segmentation model. This model improves the inverted bottleneck, integrating it with tokenized multilayer perceptron (MLP) to construct the encoder. Additionally, we introduce the lightweight attention gate (AG) within the skip connection, which effectively filters noise in low-level semantic information across spatial and channel dimensions, thus attenuating irrelevant features. To further improve performance, we innovated the AG dilation (AGDT) block and embedded it between the encoder and decoder in order to capture critical multiscale contextual information. Results: We conducted experiments on two breast cancer datasets. The experiment’s results show that compared to UNet, GDUNet could reduce the number of parameters by 10 times and the computational complexity by 58 times while providing a double of the inference speed. Moreover, the GDUNet achieved a better segmentation performance than did the state-of-the-art medical image segmentation architecture. Conclusions: Our proposed GDUNet method can achieve advanced segmentation performance on different breast ultrasound image datasets with high efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
夏天夏天悄悄过去完成签到,获得积分10
2秒前
森距离发布了新的文献求助30
2秒前
马茹发布了新的文献求助10
2秒前
田様应助岁月轮回采纳,获得10
3秒前
tq发布了新的文献求助10
4秒前
4秒前
热爱科研的小康完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助沙拉酱采纳,获得10
6秒前
7秒前
Aprial完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
汉堡包应助xiaomage采纳,获得10
12秒前
小伊001完成签到,获得积分10
13秒前
王图图发布了新的文献求助10
14秒前
14秒前
罗伊黄完成签到 ,获得积分10
14秒前
15秒前
小马甲应助傅老师采纳,获得10
16秒前
韩嘉琦完成签到,获得积分10
17秒前
岁月轮回发布了新的文献求助10
17秒前
义气丹雪应助热情蓝天采纳,获得50
18秒前
沙拉酱完成签到,获得积分10
18秒前
dyyisash完成签到 ,获得积分10
18秒前
lee完成签到,获得积分10
19秒前
韩嘉琦发布了新的文献求助10
19秒前
云飞扬完成签到,获得积分10
19秒前
20秒前
21秒前
简单沛山完成签到,获得积分10
21秒前
沙拉酱发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
方森岩完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712008
求助须知:如何正确求助?哪些是违规求助? 5207072
关于积分的说明 15265901
捐赠科研通 4864051
什么是DOI,文献DOI怎么找? 2611188
邀请新用户注册赠送积分活动 1561440
关于科研通互助平台的介绍 1518761