A Novel Tensor Decomposition-Based Efficient Detector for Low-Altitude Aerial Objects With Knowledge Distillation Scheme

计算机科学 人工智能 稳健性(进化) 杠杆(统计) 目标检测 最小边界框 航空影像 可扩展性 数据挖掘 机器学习 模式识别(心理学) 图像(数学) 化学 生物化学 基因 数据库
作者
Nianyin Zeng,Xiao‐jian Li,Peishu Wu,Han Li,Xin Luo
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 487-501 被引量:40
标识
DOI:10.1109/jas.2023.124029
摘要

Unmanned aerial vehicles (UAVs) have gained significant attention in practical applications, especially the low-altitude aerial (LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network (TDKD-Net) is proposed, where the TT-format TD (tensor decomposition) and equal-weighted response-based KD (knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU (intersection of union) loss with optimal transport assignment (F-EIoU-OTA) mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助披日悬光采纳,获得10
刚刚
科研通AI6应助Wendy采纳,获得10
刚刚
dh发布了新的文献求助30
刚刚
香蕉觅云应助阿橘采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
共享精神应助科研通管家采纳,获得30
2秒前
科研通AI6应助九日橙采纳,获得30
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得20
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
曾经大门完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得20
3秒前
英俊小鼠完成签到,获得积分10
3秒前
李健应助免疫细胞采纳,获得10
5秒前
大个应助无敌吴硕采纳,获得10
5秒前
赘婿应助xxt采纳,获得10
6秒前
FashionBoy应助披日悬光采纳,获得10
7秒前
Preseverance完成签到,获得积分10
7秒前
科研通AI6应助负责乐安采纳,获得10
8秒前
9秒前
9秒前
学术小白发布了新的文献求助50
10秒前
fanqiaqia发布了新的文献求助10
10秒前
深情安青应助嗷嗷采纳,获得10
11秒前
FashionBoy应助euphoria采纳,获得10
11秒前
阿biuu完成签到 ,获得积分10
11秒前
Sun完成签到,获得积分10
12秒前
13秒前
呱牛发布了新的文献求助10
13秒前
13秒前
科研通AI5应助yyl采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004355
求助须知:如何正确求助?哪些是违规求助? 4248536
关于积分的说明 13237242
捐赠科研通 4047837
什么是DOI,文献DOI怎么找? 2214525
邀请新用户注册赠送积分活动 1224520
关于科研通互助平台的介绍 1144998