A Novel Tensor Decomposition-Based Efficient Detector for Low-Altitude Aerial Objects With Knowledge Distillation Scheme

计算机科学 人工智能 稳健性(进化) 杠杆(统计) 目标检测 最小边界框 航空影像 数据挖掘 机器学习 模式识别(心理学) 图像(数学) 化学 生物化学 基因
作者
Nianyin Zeng,X. Li,Peishu Wu,Han Li,Xin Luo
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 487-501 被引量:5
标识
DOI:10.1109/jas.2023.124029
摘要

Unmanned aerial vehicles (UAVs) have gained significant attention in practical applications, especially the low-altitude aerial (LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network (TDKD-Net) is proposed, where the TT-format TD (tensor decomposition) and equal-weighted response-based KD (knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU (intersection of union) loss with optimal transport assignment (F-EIoU-OTA) mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
2秒前
3秒前
烂漫的雅容完成签到,获得积分10
5秒前
hahahahaha发布了新的文献求助10
9秒前
CodeCraft应助霸气的思柔采纳,获得10
10秒前
FashionBoy应助zz采纳,获得10
12秒前
changjiaren完成签到,获得积分10
12秒前
14秒前
14秒前
英俊的铭应助alexyusheng采纳,获得10
16秒前
17秒前
18秒前
dlfg完成签到,获得积分10
18秒前
Singularity应助lumengning采纳,获得10
18秒前
18秒前
小小瑾发布了新的文献求助10
20秒前
ZZ发布了新的文献求助10
23秒前
24秒前
俊秀的安阳完成签到,获得积分10
24秒前
hahahahaha完成签到,获得积分10
24秒前
不配.应助keke采纳,获得10
24秒前
科研通AI2S应助淡漠采纳,获得10
25秒前
25秒前
27秒前
张雯雯完成签到,获得积分10
30秒前
romme发布了新的文献求助10
30秒前
31秒前
开心发布了新的文献求助10
31秒前
蒲柳完成签到,获得积分10
33秒前
33秒前
33秒前
alexyusheng完成签到,获得积分10
36秒前
sxw发布了新的文献求助10
36秒前
36秒前
小小瑾完成签到,获得积分10
38秒前
玖梦发布了新的文献求助10
38秒前
大个应助正直的妍采纳,获得10
38秒前
39秒前
alexyusheng发布了新的文献求助10
40秒前
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079