Denoising Drug Discovery Data for Improved Absorption, Distribution, Metabolism, Excretion, and Toxicity Property Prediction

药物发现 分布(数学) 财产(哲学) 排泄 药品 药理学 化学 吸收(声学) 计算生物学 计算机科学 生物系统 医学 数学 生物化学 生物 材料科学 数学分析 哲学 认识论 复合材料
作者
M. Adrian,Yunsie Chung,Alan C. Cheng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (16): 6324-6337 被引量:3
标识
DOI:10.1021/acs.jcim.4c00639
摘要

Predicting absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of small molecules is a key task in drug discovery. A major challenge in building better ADMET models is the experimental error inherent in the data. Furthermore, ADMET predictors are typically regression tasks due to the continuous nature of the data, which makes it difficult to apply existing denoising methods from other domains as they largely focus on classification tasks. Here, we develop denoising schemes based on deep learning to address this. We find that the training error (TE) can be used to identify the noise in regression tasks while ensemble-based and forgotten event-based metrics fail to detect the noise. The most significant performance increase occurs when the original model is finetuned with the denoised data using TE as the noise detection metric. Our method has the ability to improve models with medium noise and does not degrade the performance of models with noise outside this range (low noise and high noise regimes). To our knowledge, our denoising scheme is the first to improve model performance for ADMET data and has implications for improving models for experimental assay data in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goofs完成签到,获得积分10
刚刚
丰富的听云完成签到,获得积分10
1秒前
云山发布了新的文献求助80
1秒前
执着的若灵完成签到,获得积分10
1秒前
彭于晏应助兮槿采纳,获得10
1秒前
1秒前
1秒前
Daisy发布了新的文献求助10
2秒前
Dismas发布了新的文献求助10
2秒前
香奈宝完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
大模型应助kuuga4256采纳,获得10
3秒前
机灵的凡松完成签到,获得积分10
3秒前
7890733发布了新的文献求助10
3秒前
檀木居然完成签到 ,获得积分10
4秒前
滴答滴发布了新的文献求助10
4秒前
张大大发布了新的文献求助20
5秒前
5秒前
xxxxxu完成签到,获得积分10
5秒前
sxq发布了新的文献求助10
5秒前
云山完成签到,获得积分10
6秒前
务实晓蓝发布了新的文献求助10
6秒前
FashionBoy应助LLLLXR采纳,获得10
7秒前
tututu驳回了ding应助
7秒前
8秒前
落晖完成签到 ,获得积分10
8秒前
8秒前
9秒前
WYT发布了新的文献求助10
10秒前
哈密瓜发布了新的文献求助10
11秒前
11秒前
11秒前
特牛啊啊完成签到,获得积分10
12秒前
丘比特应助guoliyang采纳,获得10
13秒前
13秒前
junru发布了新的文献求助10
13秒前
在水一方应助sxq采纳,获得10
13秒前
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205985
求助须知:如何正确求助?哪些是违规求助? 4384621
关于积分的说明 13653797
捐赠科研通 4242847
什么是DOI,文献DOI怎么找? 2327751
邀请新用户注册赠送积分活动 1325466
关于科研通互助平台的介绍 1277574