Gradient Inversion Attacks: Impact Factors Analyses and Privacy Enhancement

计算机科学 反演(地质) 人工智能 模式识别(心理学) 地质学 古生物学 构造盆地
作者
Zipeng Ye,Wenjian Luo,Qi Zhou,Zhenqian Zhu,Yuhui Shi,Yan Jia
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-17
标识
DOI:10.1109/tpami.2024.3430533
摘要

Gradient inversion attacks (GIAs) have posed significant challenges to the emerging paradigm of distributed learning, which aims to reconstruct the private training data of clients (participating parties in distributed training) through the shared parameters. For counteracting GIAs, a large number of privacy-preserving methods for distributed learning scenario have emerged. However, these methods have significant limitations, either compromising the usability of global model or consuming substantial additional computational resources. Furthermore, despite the extensive efforts dedicated to defense methods, the underlying causes of data leakage in distributed learning still have not been thoroughly investigated. Therefore, this paper tries to reveal the potential reasons behind the successful implementation of existing GIAs, explore variations in the robustness of models against GIAs during the training process, and investigate the impact of different model structures on attack performance. After these explorations and analyses, this paper propose a plug-and-play GIAs defense method, which augments the training data by a designed vicinal distribution. Sufficient empirical experiments demonstrate that this easy-toimplement method can ensure the basic level of privacy without compromising the usability of global model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的代容完成签到,获得积分10
刚刚
Miss_Q完成签到 ,获得积分10
刚刚
顺利翠彤应助liuzhen采纳,获得50
刚刚
cccvingbbb完成签到,获得积分10
1秒前
医路通行发布了新的文献求助10
1秒前
2秒前
王鑫发布了新的文献求助10
2秒前
明亮无颜发布了新的文献求助10
2秒前
Lucas应助重大化工小白采纳,获得10
6秒前
7秒前
jnu完成签到,获得积分10
9秒前
10秒前
斯文败类应助卓梨采纳,获得10
10秒前
lenny完成签到,获得积分10
10秒前
liang完成签到,获得积分10
10秒前
11秒前
归海天与完成签到 ,获得积分10
11秒前
SciGPT应助明亮无颜采纳,获得10
11秒前
adjcbv发布了新的文献求助10
11秒前
13秒前
13秒前
烂漫灭龙发布了新的文献求助10
14秒前
Lucas应助路旁小白采纳,获得10
14秒前
15秒前
李爱国应助能干的白风采纳,获得10
15秒前
可言发布了新的文献求助10
15秒前
冯哒哒完成签到 ,获得积分10
16秒前
金戈完成签到,获得积分10
17秒前
18秒前
lenny发布了新的文献求助10
18秒前
医路通行完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
归尘发布了新的文献求助10
20秒前
20秒前
执着又蓝发布了新的文献求助10
20秒前
乐乐应助金戈采纳,获得10
21秒前
冷静谷芹发布了新的文献求助10
21秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475635
求助须知:如何正确求助?哪些是违规求助? 3067483
关于积分的说明 9104253
捐赠科研通 2758983
什么是DOI,文献DOI怎么找? 1513845
邀请新用户注册赠送积分活动 699843
科研通“疑难数据库(出版商)”最低求助积分说明 699197