DTI-LM: Language Model Powered Drug-Target Interaction Prediction

计算机科学 背景(考古学) 序列(生物学) 过程(计算) 源代码 任务(项目管理) 药物发现 图形 编码(集合论) 机器学习 人工智能 生物信息学 理论计算机科学 程序设计语言 生物 系统工程 遗传学 工程类 古生物学 集合(抽象数据类型)
作者
Khandakar Tanvir Ahmed,Md. Istiaq Ansari,Wei Zhang
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btae533
摘要

Abstract Motivation The identification and understanding of drug-target interactions (DTIs) play a pivotal role in the drug discovery and development process. Sequence representations of drugs and proteins in computational model offer advantages such as their widespread availability, easier input quality control, and reduced computational resource requirements. These make them an efficient and accessible tools for various computational biology and drug discovery applications. Many sequence-based DTI prediction methods have been developed over the years. Despite the advancement in methodology, cold start DTI prediction involving unknown drug or protein remains a challenging task, particularly for sequence-based models. Introducing DTI-LM, a novel framework leveraging advanced pretrained language models, we harness their exceptional context-capturing abilities along with neighborhood information to predict DTIs. DTI-LM is specifically designed to rely solely on sequence representations for drugs and proteins, aiming to bridge the gap between warm start and cold start predictions. Results Large-scale experiments on four datasets show that DTI-LM can achieve state-of-the-art performance on DTI predictions. Notably, it excels in overcoming the common challenges faced by sequence-based models in cold start predictions for proteins, yielding impressive results. The incorporation of neighborhood information through a graph attention network further enhances prediction accuracy. Nevertheless, a disparity persists between cold start predictions for proteins and drugs. A detailed examination of DTI-LM reveals that language models exhibit contrasting capabilities in capturing similarities between drugs and proteins. Availability and implementation Source code is available at: https://github.com/compbiolabucf/DTI-LM Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助咕咕咕采纳,获得10
刚刚
zxy发布了新的文献求助10
刚刚
1秒前
醉人的仔发布了新的文献求助10
1秒前
daguan完成签到,获得积分10
1秒前
桐桐应助nikai采纳,获得10
1秒前
2秒前
3秒前
123完成签到,获得积分10
3秒前
善良香岚发布了新的文献求助10
3秒前
4秒前
4秒前
444完成签到,获得积分10
4秒前
任一发布了新的文献求助30
4秒前
莉莉发布了新的文献求助10
5秒前
Zoe发布了新的文献求助10
5秒前
Hover完成签到,获得积分10
5秒前
自然的茉莉完成签到,获得积分10
6秒前
6秒前
Mandy完成签到,获得积分10
6秒前
7秒前
脑洞疼应助qaq采纳,获得10
7秒前
世界尽头发布了新的文献求助10
7秒前
小二郎应助科研民工采纳,获得10
7秒前
8秒前
无奈满天发布了新的文献求助10
8秒前
9秒前
MADKAI发布了新的文献求助10
9秒前
9秒前
贪玩丸子完成签到,获得积分10
9秒前
神勇的雅香应助liutaili采纳,获得10
10秒前
KSGGS完成签到,获得积分10
10秒前
YANG关注了科研通微信公众号
10秒前
11秒前
11秒前
11秒前
99发布了新的文献求助10
12秒前
12秒前
科研通AI5应助qi采纳,获得10
12秒前
乐乐发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759