DTI-LM: Language Model Powered Drug-Target Interaction Prediction

计算机科学 背景(考古学) 序列(生物学) 过程(计算) 源代码 任务(项目管理) 药物发现 图形 编码(集合论) 机器学习 人工智能 生物信息学 理论计算机科学 程序设计语言 生物 系统工程 遗传学 工程类 古生物学 集合(抽象数据类型)
作者
Khandakar Tanvir Ahmed,Md. Istiaq Ansari,Wei Zhang
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btae533
摘要

Abstract Motivation The identification and understanding of drug-target interactions (DTIs) play a pivotal role in the drug discovery and development process. Sequence representations of drugs and proteins in computational model offer advantages such as their widespread availability, easier input quality control, and reduced computational resource requirements. These make them an efficient and accessible tools for various computational biology and drug discovery applications. Many sequence-based DTI prediction methods have been developed over the years. Despite the advancement in methodology, cold start DTI prediction involving unknown drug or protein remains a challenging task, particularly for sequence-based models. Introducing DTI-LM, a novel framework leveraging advanced pretrained language models, we harness their exceptional context-capturing abilities along with neighborhood information to predict DTIs. DTI-LM is specifically designed to rely solely on sequence representations for drugs and proteins, aiming to bridge the gap between warm start and cold start predictions. Results Large-scale experiments on four datasets show that DTI-LM can achieve state-of-the-art performance on DTI predictions. Notably, it excels in overcoming the common challenges faced by sequence-based models in cold start predictions for proteins, yielding impressive results. The incorporation of neighborhood information through a graph attention network further enhances prediction accuracy. Nevertheless, a disparity persists between cold start predictions for proteins and drugs. A detailed examination of DTI-LM reveals that language models exhibit contrasting capabilities in capturing similarities between drugs and proteins. Availability and implementation Source code is available at: https://github.com/compbiolabucf/DTI-LM Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
刚刚
刚刚
HEIKU应助xueshucao采纳,获得10
1秒前
喜东东发布了新的文献求助10
2秒前
zky发布了新的文献求助10
3秒前
快乐应助整齐的不评采纳,获得10
3秒前
半只橙完成签到,获得积分10
5秒前
熊威完成签到,获得积分10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
哎嘿应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
桃铱铱发布了新的文献求助10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
9秒前
北海_hello完成签到,获得积分10
9秒前
homelo完成签到,获得积分10
9秒前
El完成签到,获得积分10
11秒前
岁月如酒应助橙子采纳,获得10
12秒前
卖火柴的小女孩完成签到,获得积分10
12秒前
12秒前
13秒前
小鱼儿完成签到,获得积分10
13秒前
小猴完成签到,获得积分10
13秒前
13秒前
14秒前
WuFen发布了新的文献求助10
14秒前
科研岳完成签到,获得积分10
15秒前
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159243
求助须知:如何正确求助?哪些是违规求助? 2810372
关于积分的说明 7887509
捐赠科研通 2469200
什么是DOI,文献DOI怎么找? 1314702
科研通“疑难数据库(出版商)”最低求助积分说明 630697
版权声明 602012