Visco-hyperelastic material model fitting to experimental stress–strain curves using a genetic algorithm and its application to soft tissue simulants

超弹性材料 粘弹性 本构方程 材料科学 参数统计 遗传算法 算法 有限元法 计算机科学 生物系统 应用数学 数学 数学优化 结构工程 复合材料 工程类 生物 统计
作者
Samuel Gómez-Garraza,Raúl de Santos,Diego Infante‐García,Miguel Marco
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-67603-8
摘要

Ballistic impacts on human thorax without penetration can produce severe injuries or even death of the carrier. Soft tissue finite element models must capture the non-linear elasticity and strain-rate dependence to accurately estimate the dynamic human mechanical response. The objective of this work is the calibration of a visco-hyperelastic model for soft tissue simulants. Material model parameters have been calculated by fitting experimental stress–strain relations obtained from the literature using genetic algorithms. Several parametric analyses have been carried out during the definition of the optimization algorithm. In this way, we were able to study different optimization strategies to improve the convergence and accuracy of the final result. Finally, the genetic algorithm has been applied to calibrate two different soft tissue simulants: ballistic gelatin and styrene–ethylene–butylene–styrene. The algorithm is able to calculate the constants for visco-hyperelastic constitutive equations with high accuracy. Regarding synthetic stress–strain curves, a short computational time has been shown when using the semi-free strategy, leading to high precision results in stress–strain curves. The algorithm developed in this work, whose code is included as supplementary material for the reader use, can be applied to calibrate visco-hyperelastic parameters from stress–strain relations under different strain rates. The semi-free relaxation time strategy has shown to obtain more accurate results and shorter convergence times than the other strategies studied. It has been also shown that the understanding of the constitutive models and the complexity of the stress–strain objective curves is crucial for the accuracy of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Geng完成签到,获得积分10
刚刚
刚刚
宇_完成签到,获得积分20
刚刚
香蕉觅云应助NEMO采纳,获得10
刚刚
1秒前
1秒前
星辰大海应助247793325采纳,获得20
1秒前
1秒前
灵巧荆发布了新的文献求助10
1秒前
1秒前
haimianbaobao完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
SAW发布了新的文献求助10
4秒前
爆米花应助LiShin采纳,获得10
4秒前
Jasper应助jxcandice采纳,获得10
5秒前
5秒前
Owen应助雾见春采纳,获得10
6秒前
aiming发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
无辜之卉发布了新的文献求助10
8秒前
yty发布了新的文献求助10
8秒前
烟花应助卡夫卡没在海边采纳,获得10
9秒前
456发布了新的文献求助10
10秒前
传奇3应助温暖以蓝采纳,获得10
10秒前
辛勤的仰完成签到,获得积分10
10秒前
如意新晴完成签到,获得积分10
10秒前
10秒前
zrk完成签到,获得积分20
11秒前
11秒前
szmsnail发布了新的文献求助20
11秒前
Ava应助Monik采纳,获得10
11秒前
打打应助zhui采纳,获得10
12秒前
12秒前
中华有为发布了新的文献求助10
13秒前
yana完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794