Biomedical Flat and Nested Named Entity Recognition: Methods, Challenges, and Advances

计算机科学
作者
Yesol Park,Gyujin Son,Mina Rho
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (20): 9302-9302
标识
DOI:10.3390/app14209302
摘要

Biomedical named entity recognition (BioNER) aims to identify and classify biomedical entities (i.e., diseases, chemicals, and genes) from text into predefined classes. This process serves as an important initial step in extracting biomedical information from textual sources. Considering the structure of the entities it addresses, BioNER tasks are divided into two categories: flat NER, where entities are non-overlapping, and nested NER, which identifies entities embedded within another. While early studies primarily addressed flat NER, recent advances in neural models have enabled more sophisticated approaches to nested NER, gaining increasing relevance in the biomedical field, where entity relationships are often complex and hierarchically structured. This review, thus, focuses on the latest progress in large-scale pre-trained language model-based approaches, which have shown the significantly improved performance of NER. The state-of-the-art flat NER models have achieved average F1-scores of 84% on BC2GM, 89% on NCBI Disease, and 92% on BC4CHEM, while nested NER models have reached 80% on the GENIA dataset, indicating room for enhancement. In addition, we discuss persistent challenges, including inconsistencies of named entities annotated across different corpora and the limited availability of named entities of various entity types, particularly for multi-type or nested NER. To the best of our knowledge, this paper is the first comprehensive review of pre-trained language model-based flat and nested BioNER models, providing a categorical analysis among the methods and related challenges for future research and development in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
124332发布了新的文献求助10
1秒前
手机应助Jonathan采纳,获得10
2秒前
Ploaris发布了新的文献求助10
3秒前
Christina完成签到,获得积分10
3秒前
3秒前
akun完成签到,获得积分10
4秒前
4秒前
汉堡包应助YXH采纳,获得10
5秒前
Hou完成签到 ,获得积分20
8秒前
monere发布了新的文献求助10
8秒前
10秒前
咻咻应助完美的海秋采纳,获得50
12秒前
12秒前
ymxmx完成签到,获得积分10
14秒前
15秒前
Comrade_ZZD完成签到 ,获得积分10
17秒前
忧伤的宝马完成签到,获得积分10
17秒前
17秒前
18秒前
ymxmx发布了新的文献求助10
19秒前
startt发布了新的文献求助10
19秒前
20秒前
20秒前
YU DIAN发布了新的文献求助10
21秒前
22秒前
22秒前
lucky发布了新的文献求助10
23秒前
科研通AI2S应助糊涂的丹南采纳,获得10
24秒前
申木发布了新的文献求助30
25秒前
lize5493发布了新的文献求助10
25秒前
单纯代萱发布了新的文献求助30
27秒前
27秒前
lin应助老实的冰棍采纳,获得10
27秒前
zzc发布了新的文献求助10
28秒前
28秒前
29秒前
30秒前
31秒前
Jasper应助Jonathan采纳,获得10
32秒前
劲秉应助完美的海秋采纳,获得50
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264819
求助须知:如何正确求助?哪些是违规求助? 2904784
关于积分的说明 8331584
捐赠科研通 2575093
什么是DOI,文献DOI怎么找? 1399658
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633296